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Naturalness of Polymorphism

Peter J. de Bruin®

September 1, 1989

Abstract

From the type of a polymorphic object we derive a general uniformity theorem that
the object must satisfy. We use a scheme for arbitrary recursive type-constructors. Special
cases concern natural and dinatural transformations, promotion and induction theorems.
We employ the theorem to prove equivalence between different recursion-operators.

1 Introduction

Objects of a parametric polymorphic type in a polymorphic functional language like Miranda
or Martin-L&f-like systems enjoy the property that instantiations to different types must have
a similar behaviour. Specifically, We use greek letters as type-variables, and T'[a] stands for
a type-expression possibly containing free occurrences of c. Stating ¢t : T[] means that term
t has polymorphic type T[] (in some implicit context), and hence t : T[A] for any particular
type A. Such instances are sometimes written with a subscript for clarity: t4 : T[A]. Some
type-expressions T'[a] are functorial in a. Le., for any function p : A — B there is a given
function T[p] : T[A] — T[B], such that T[I4] = Ir(4) and T[piq] = T[p]iT[q], where I is the
identity function and (;) denotes forward function-composition. It has often been observed (e.g.
[1]) that polymorphic functions f : Ula] — V[a], where U, V are functors, must be natural

transformations:
For any p: A — A’, one has f4;V([p] = Ulp]; far : U[A] = V[A'] (1)

Ilustration:
vja] —A— vi4)

p L,

For example, any function rev : a* — ax, where o is the type of lists over e, must satisfy for
p:A— A

rev ; px = p*; rev

Unfortunately, type-expression (U[a] — V[a]) is generally not functorial itself (because (—)
is contravariant in its first argument). One can extend statement (1) to dinatural transforma-
tions in the sense of Mac Lane [2] pp. 214-218, but such a statement is still not provable by
induction on the type-correctness of f. In this paper we will develop a generalization to arbi-
trary types that is provable for all lambda-definable objects of some type. The generalization
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allows one to derive many properties of polymorphic objects from their type alone, which are
conventionally proven by induction using their definition, for example promotion-theorems on
functions like:

foldr : (a x B — B)x B — (ax — B)
This promotion-theorem says forp: A — A’,q: B — B',c: AXx B — B and c:A'xB' - B,
if
cig=(pxq);c’:Ax B — B

then:
foldr(c,b);q = p*; foldr(c', qb) : Ax — B’

If one identifies natural numbers with objects of polymorphic type (a — a) — (a — @), one
can even derive Peano’s induction-axiom.

The problem was suggested to us by J.G. Hughes of Glasgow University who mentioned
property (1) during a lecture in Groningen in October 1988. After sending him an earlier version
of our notes we received a draft paper [3] from Philip Wadler (also of Glasgow University) who
derives the same main theorem (but in a more formal setting) as we do, and gives many
promotion-like applications. His paper gave us the references to the literature.

The essential theorem is in fact Reynolds’ abstraction theorem [4]. (His paper contained
a rather irrelevant inconsistency in regarding polymorphic objects as set-theoretic functions
on the class of all types.) The basic idea had already been given by Plotkin [5], and a more
complicated variant is formed by the logical relations of Mitchell and Meyer [6]. It was gener-
ally regarded as merely a representation independence theorem for datatype implementations,
while its implications for deriving properties of functional programs seem to have been unrec-
ognized at that time. Quite different approaches are used in Bainbridge, Freyd e.a. [7,8], based
on dinatural transformations in a category called LIN of certain coherent spaces and linear
maps, and in Carboni e.a. [9] where the so-called Realizability Universe is constructed. Both
approaches appear to be conceptually far more complicated than Reynolds’. There is also an
article by John Gray [10] which dealt only with naturalness of some particular operations like
currying.

Our contribution consists of the inclusion of arbitrary initial types, some applications of a
different kind than Wadler’s applications, a very attractive proof of the dinaturalness-property,
and a proof of equivalence between two different recursion-operators.

2 Our language

The proof of the naturalness theorem is by induction on the derivation of the type of an
object. We therefore need to specify some polymorphic functional language. It may be ei-
ther a programming language with fixpoints, where the semantic domain of a type is a cpo,
or a purely constructive language where types are just sets and all functions are total. We
will use a constructive typed lambda calculus. Besides type-variables a, we have (—) as the
function-type-constructor, and an unspecified number of other type-constructors O (possibly
user-defined), each constructing from a sequence of types U (of some specific length) the initial
(least) datatype that is closed under some object-constructors 0k, each having a sequence of
arguments of some types DU, ©U]. The Dy[a, 8] must be functorial in B,soforq: B — B’
we have Dy[a,q] : Dula, B] = Dyla, B']. There is an additional requirement on Dy, to be
stated later (3). We use a categorical elimination-construct ©_elim (compare Hagino [11]), from
which other eliminators may be defined.
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The derivability relation ‘¢ has type T under the assumptions z; : S;’ is denoted z :: § F
t: T, and is generated by the following rules:

w8 kiS5 {Var-intro}
zuSFf:U-V;zuSku:U = zuSFfu:V {(—)-elim}
z:S,y:UFv:V =2 zuSEAyw:U -V {(—)-intro}

2 S &6y : Di[U,0U] - OU {O-intro}
2 SFOelim(v):0U -V {O-elim}

8 8 8 8 8

z::Skuv: DU, V] >V (each k) =
There is an untyped conversion relation (=), characterized by:

(Ayvly)e =~ o[y
O_elim(v)(6xd) =~ vk(Dile, O elim(v)]d)

We will define a typed extensional equivalence in the next section. The theorem can also be
given in an extended language that includes final datatypes, and dependent types. In section
6 we will add second-order quantification (in terms of which initial and final datatypes can be

defined).
Note that we deal with terms only, not with models. One can give the same results as we

do in an arbitrary model for objects representable by terms [3].

3 Naturalness on binary relations

Observe that, although we cannot extend a function p from A to A’ to a function from (U[4] —
V[A]) to (U[A"] — V[A]), property (1) suggests considering the binary relation between f :
U[A] = V[A] and f': U[A") = V[A'] given by f;V[p] = U[p]; f'. We will use this observation
to extend a relation (instead of a function) between A and A’ to one between T[A] and T[A’].

Definition. A relation R C A x A’ is a set of pairs of terms of types A and A’, taken
modulo conversion. (Had we used a programming language permitting the construction of
non-terminating programs then we would use elements of the corresponding cpos and R would
be required to be closed under directed limits: if V C R is (pairwise) directed, then | |V € R.
In particular, (L4, L) € R as L is the limit of the empty set.)

While we use a colon (:) for typing, (€) denotes relation-membership.

Definition. We will lift any type-constructor © to a relation-constructor such that for any
relation sequence R C A x A’ (i.e. R; C A; X A}) one has:

ORC OAXxOA

First, as (A — B) is the greatest type such that for f : A — B one has Vz : A. fz : B, we
define for Q CAx A', RC B x B":

Q—R = {(f/,f):(A- B)x(A' - B')|VY(z,z') € Q. (fz, f'z") € R} (2)

That is to say, the pair of functions should map related arguments to related results, as illus-

trated by:
a—1L B
1Q R
Al i BI
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If Oa is the initial type closed under object-constructors
6k : Di[a,0a] = Oa
where each Dy, satisfies for relations P, Q, R
(9,9)€ P—>Q = (Dule,g),Dula,g']) € D[R, P] » Du[R, Q] (3)
then we define OR to be the least relation that is closed under:
(0, 0x) € Dk[R,OR] — OR (4)

This makes sense since for P C Q we have Di[R, P] C Di[R, Q] by (3), taking g and g’ to be
the identity I.

Thus, the induction principle for OR is: if we wish to prove a predicate P for all pairs in
OR, then, considering P as a relation P C ©A x ©A’, we must show for each k:

Y(d,d’) € Di[R, P). (6kd,0:d’) € P (5)
Check for example that all pairs in @R are convertible to (6xd,6xd’) for some k and (d,d’) €
Dk[Ra GR]
Example. Some relation-constructors corresponding to common type-constructors are
Q+R := {(inl(z),inl(z"))|(z,2) € Q}
U {(inr(y),inx(y")) | (3,9') € R}

@xR = {({z,9),(z",¥) | (z,2) €Q A (:¥) € R}
Bool := {(true,true),(false,false)}

and IN and R* are the least relations such that:

{(0,0)} U {(succ(z),suce(’) | (z,2') € N}
{(nil, nil)} U {(cons(z, z), cons(z’, 2)) | (z,2") € R A (2,2') € R+}

N
Rx

Now, for any type-expression T'[@] containing only type-variables from the sequence a, we
have extended a relation-sequence R C A x A’ to a relation T[R] C T[A] x T[A’]. However, T

is not a functor on relations.
Notice that the same schemes (2) and (4) describe extensional equality on ©®A in terms of

the equality on the A;.

Definition. Extensional equality on a closed type T is given by T as a relation:
Et=t:T = (t,t)eT

The symbol = and suffix : T will often be omitted. We shall consider only relations that are
closed under this extensional equality. Equality for terms of types containing variables will

soon be defined.

Now, if we can derive t : T[a] then not only ¢4 : T[A] for any type-sequence A (by some
substitution theorem), but also (ta,t4:) € T[R] for any relation-sequence R. (It is to be
understood that overloaded operators, like the effective equality-test (==4): A X A — bool in
Miranda, may not be used as if they where polymorphic.) Taking the context into account, we
have the following main theorem, equivalent to the abstraction theorem in (4], the fundamental
theorem of Logical Relations in [6], and the parametricity result in [3]:
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Naturalness theorem. If z :: S[a] I t[z] : T[a] then for any sequences A, A’, R,s, s’ where
R C A x A’ and (sj,$}) € S;[R] one has:

(tals],twls']) € T(R]
Remark: we say that t[z] is natural. The theorem may be generalized to relations of arbitrary
arity.
Proof: by a straightforward induction on the derivation of z ::'S[a] I t[z] : T[a]:
Var-intro: z :: S[e] F z; : Sj[a]. By assumption we have (s;, s}) € S;[R].
(—)-elim. The hypotheses say (f[s], f[s']) € U[R] — V[R] and (u[s], u[s"]) € U[R]. Then by
definition of (—) on relations we obtain:

(fls]uls], f[sTuls]) € V(R]

(—)-intro. The hypothesis for the premise z :: S[a],y: U] - v[z,y] : V[a] says that for any
(s,8') € S[R] and (u,u’) € U[R] one has (v[s,u],v[s',]) € V[R].
So ((Ay.v[s,y])u, (Ay.v[s’,y])u’) € V[R] as relations are closed under conversion. Hence:

(Ay.v[s, ), Ay.v[s', y]) € U[R] — V[R]

©-intro. We must show:

(64,6:) € Du[U[R), OU[R]] — OU[R]
This is an instance of (4).
©-elim. The (global) hypothesis is: (v[s], vk[s']) € Dk[U[R], V[R]] — V[R] for each k. We

must show:
(0 _elim(v[s]), ©-elim(v[s'])) € OU[R] — V[R]

We use a local induction on the generation of OQU[R]. Thus we will prove @U[R] C P
where:
P := {(t,1):0U[A] x OU[A"] | (©-elim(v[s])t, ©elim(v[s])t") € V[R]}
Note that:
(©_elim(v[s]), @-elim(v[s'])) € P — V[R] (6)
We check (5) for each k:
(d,d") € D[U[R], P]
=  (Di[a, ©-elim(v[s])]d, Dk[e, ©-elim(v[s']))]d") € Dx[U[R], V[R]] {(3) on (6)}
= (v[s](Di[a, ©-elim(v[s])]d), vk[s')(Dk[e, ©-elim(v[s])]d’)) € V[R] {global hyp.}
(©__elim(v[s])(8xd), ©-elim(v[s'])(6xd")) € V[R] {conversion}
(6xd, 8xd') € P {def. P}

This completes the proof.
The theorem suggests the following definition:

Definition. Extensional equality under assumptions,
[
8 ﬁ t[z] = t'[z] : T[]
holds iff, for all sequences A, A", R C A x A’,(s,s') € S[R] one has (t4[s], ts,[s']) € T[R].
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Many applications arise by using a sequence of function-like relations:

Definition. For p: A — A’ let the graph of p be:

(p) = {(z,pz)|z: A}

R C A x A'is called function-like if R = (p) for some p : A — A’. (Note that, in a cpo, (p)
is closed under directed limits iff p is continuous and strict, i.e. pL4 = L 4.) The naturalness
theorem specializes for polymorphic ¢t : T[e] and p: A — A’ to:

(ta,tar) € T((p)] (7)
Many type-constructors © can be extended to functors in a natural way, so that (@p) =
O(p). In particular:

Theorem. If Oa is the initial type closed under 6 : D[, ©a] — Oa, and all Dy, 8] are
functorial in o (besides 3), then there is a unique functor-definition of © such that all 6 are
natural transformations. Moreover, if (Dgi[p, q]) = Dri[(p), ()], then (©p) = O(p).

Proof. 6 being a natural transformation means, according to (1):
6 ;Op = Di[p,Op];0k : Dk[A,OA] — QA (8)

Equivalently:
0L ;0p = Dk[IA, @p] ;Dk[p, IAI] 10k : Dk[A, @A] — 04’

By initiality, this has a unique solution for ©p. Further, we prove (s,s’) € (0p) = (s,s') € O(p)
by induction on s : ©A. Thus we will prove © 4 C P where:

P = {s:0A]|Vs.(s,8)€(0Op)=(s,5)E€ O(p)_}
Under hypothesis d € Di[A, P] we check that fxd € P (but we skip some details about the
behaviour of relation-constructors when applying the hypothesis): b 4
[P 8
(0xd,s") € (Op) CUisee)
= (Dk[p, ©p]:bk)d = &' {(8)}

3d' . (d,d') € (Dk[p,©p]) A 0xd' = ' {one-point rule}

3d' . (d,d") € Dg[(p),(©p)] A 6kd’ = s' {assumption on Di}
= 3d'.(d,d") € D[(p),9(p)] A 0xd' = s' {induction hypothesis}
= (6xd, ') € O(p) {def. © on relations}

il

So we have, for example, (p X q) = (p) X (¢) and can safely omit the parentheses. Notice
that p — ¢ can only be read as (p) — (g).

Fact. For function-like relations we have, if p: A — A/, ¢: B — B":

p—q = {(£f)Ifig=pif :A— B} (9)
pPP—q = {(fipifiq)| f:A— B} (10)
using R° := {(y,2)](z,y) € R}

Soif f: Ula] — V]a], and hence (f, f) € U[p] — V[p] by (7), then is f a natural transformation
indeed. Also useful might be, for f: A’ — B:

(pif, fig)€Ep—4q (11)
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4 Applications

A simple application is to prove that f = Az.z is the only solution to f : @ — a. Naturalness
of f says: for any R C A X A’ we have (f,f) € R — R.
Now, fix type A and a : A. Taking R := {(a,a)} yields (fa, fa) € R, as (a,a) € R. So fa=a
for all a, hence f = Az.z by extensionality of functions.

(If types are cpos there are two solutions. If a # L, we must take R := {(L,L),(a,a)} and
get fa &€ {L1,a}. Furthermore, for any b : B we can get (fa, fb) € {(L,L1),(a,b)}. So in case
fa = L we have fb = L for all b, hence f = Az.L; and in case fa = a we obtain fb = b and
hence f = Az.z.)

Next, let (%) be a functor, say of lists, so for p : A — A’ we have px : A+ — A’x and
(p*) = (p)*. Let f be a function with the type of foldr, i.e.:

fi(axB—pB)xp— (ax—f)
Naturalness of f on function-like relations says: if p: A — A’, ¢: B — B’ then
(f,H)epxg—q) xqg—(px—q)

i.e.if (¢,¢’) € (px ¢ — ¢) and (b,¥) € (g) then (f(e,b), f(c,t)) € (p* — ).
Using (9) this equivales: if
¢cig=(pxq)ic :AxB— B

then:
fle,b)iq = prif(c',qb): Ax — B’

(This is a generalization of the promotion-theorem for forward lists [12].) Notice that the result
is independent of the definition of f.
In particular, we have for @ : A’ x B’ — B, as by (11) ((p X ¢)1®, ®i¢) € (p X ¢ — ¢):

f(pxq)i®, b)iqg=p*: f(®3g, ¢b) (12)
Another instance yields, as cons ; foldr(c’, ') = (I X foldr{c’,b')); ¢’ and foldr(c’, b’)nil = b
f(cons, nil); foldr(c',b") = f(c', ')

Finally, we give an application! using ternary relations. Let (*) be a functor, say of non-
empty lists, and (/p) a (polymorphic) mapping of operators @ : Bx B — B into ®/: Bx — B.
We will prove: if f,g: A — B, and @ : B x B — B is commutative and associative, then
for [: A*,
®/(f+) ® 8/(9+1) = &/((f &" 9)*0)

where @4 : (A — B) x (A — B) — (A — B) is the lifted version of ®. We will regard & as a
ternary relation @ C B X B X B so that:

((E,y,Z)E@ = zQy=2
We derive:

Vi Ax . (8/(f*), ®/(g*l), ®/((f &* g)x)) € &
< (fr, g% (fOhg)x) € Ax > Bx A (8/,8/,8/) € O*x— &

!Posed by Roland Backhouse
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< (f.9,(f&1g9)EA—-B A (9,8,0)EBXD—D {naturalness of (*), (/) }

_ Vz:A. fePgr=(fDig)z
B ATk, Yk 2k) €D . (ToBT1. Y0 B Y1,20821) €O

true
{ A Vg, gk - (20 © 21) © (Y0 © 31) = (20 @ %0) & (21 © 41)
<= @ is commutative and associative

5 Dinaturalness

We will now derive the dinaturalness result from our general naturalness.

Definition. A difunctor T[c||8] is given by a mapping of sequences of types A, B to a type
T[A||B)] and a mapping of sequences of functions p: A — A’, ¢: B — B’ to a function

T(pllq] : T[A'l| B] — T[A|| B']
such that identity and composition are respected (note the contravariance in a):

T(I14llIs] = Irpas
Tlpip'llgsq’] T(p'lq); T(plld]

Keep in mind that types such as T[A’||4] are lifted to their equality-relation. We will also
use the simple fact that composition is natural:

(f,fYEQ—RA(9,9)ER—-S = (fig, fig)eQ—S

I

The following theorem is a reformulation of a lemma found by Roland Backhouse.

Theorem. With any type-expression T[a] we can associate a difunctor T[e||B] such that
T[A] = T[A]|A], and for p: A — A’ one has both:

(TPl Tal, T(1allp)) € T[A'l|A] = Tp] (13)
(T([1allp), T(pll1a1) € Tlp] — T[A[|A] (14)

That is to say, the first pair of functions map equal arguments to related results, the second
pair map related arguments to equal results, as illustrated by:

T[p|| 1]~ T1A] %{]
T[A'||A] — \ T[p]/T[AIIA’]
T(I|lp) ~ 14 ~ Tlpl1]

Do not confuse relation T[p] C T[A] x T[A’] and function T'[p||p] : T[A'||A] — T[A]|A’].

Proof: by induction on the structure of T'[a]. 7o 4
If T[a] = «; then defining T[A||B] := B; and T'[p||q] := ¢; does the job. © be eu,;
If T[a] = Ula] — V[a] then the following lines define a difunctor: e/

T4l B]
Tlpllq]

using (u o— v)f

U[B||A] — V[A|B]
Ulgllp) o= V[pllq]
usfiv
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Remark that, as a relation, (u o— v) = (u° — v) by (10).
To check (13) we must show:

(U[Lllp] o= ViplI1), UlpllT] o= V[I|Ip]) € (U[A[|A] = V[A'||A]) = (U[p] = Vp])
That is, for f : U[A]|A"] — V[A4'||A] we must have:
(UIllp)s £5VIpIlT), Ulpl1): £5 V(TIp)) € Ulp] — Vip]

This holds by composition of the inductive hypothesis (14) for U, the typing of f, and hypothesis
(13) for V:

UlA] __U[1||p] Vip1l. V4]
) Ulp) ula)|a)—L~via)a ) Viz)
Ula] ~ Ulpll1] Vel ~ vi4]

Similarly we check (14), that is, for (f, f') € U[p] — V[p] we must have:
Ulpll1); £3 VI{IIIp) = ULllp); £ VIpIT] : U[A[|A] = V[A]|A] (15)

This holds by composition of hypothesis (13) for U, the requirement on (f, f'), and hypothesis
(14) for V:

Ulpl1l. V4] —L— via) vy
U[A"||A] | Ulp] / ! Vip] V[A|| 4]
UlLllp] ~ vja] —L— via) TVl

We skip initial datatypes, but remark that for functors © the definition is just (OU)[a||f] :=
O(U[allB)).

To summarize, T'[p||q] is constructed from T'[a] by replacing all negative occurrences of o;
by p;, all positive occurrences by g;, and all arrows (—) by (o—). Now, combining naturalness-
result (7) with (14) we get:

Corollary. All polymorphic t : T[c] satisfy T[I||p]t4a = T[p||I]ta forp: A — A’. In particular,
all polymorphic f : Ula] — Vo] are dinatural transformations, that is to say, they satisfy (15)
with fa f/ = fA,fA"

For example, any function
filaxB—B)xB— (ax—p)
will satisfy forp: A — A, ¢: B — B":
(px go= 1) x 1) fapi(Ix o= q) = (I x L o= q) X @) farpr i(p* o= 1)

Applied to some (®,b) : (A’ x B' = B) x B, this is our result (12) in section 4.

As all pairs in U[p] need not to occur in the range of (U[p||I], U[I||p]), the statement of
dinaturalness seems to be weaker than general naturalness. However, we know of no example
family t4 : T[A] such that T[I||p]ta = T[p||1]ta for all p: A — A’ but not (ta,ta) € T[R] for
all RC Ax A"
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6 Second-order languages
We may use a second-order language, where, say, Va.T'[e] is a type with:

z:: S Ft:T[a], where o does not occur freein § = z:: S5+ t:Va.T[q]
z:Skt:VaTla] = z:Skt:T[U]

The appropriate extension of relations is, if R[Q] C T[A] x T[A'] for any @ C A x A’ (that is
closed under extensional equality):

Yp.R[p] := {(t,t')|VA, A" type,Q C Ax A".(t,¢') € R[Q]}
As an application, we define type IN, z : IN and s : IN — IN by:

N := Va((a—a)—(a—a))
z = Af.Aa.a
s = Am.Af.Aa.f(mfa)

We will prove Peano’s induction-axiom, i.e. assuming
PCNIN,ze P,Yme P.smeP

we will prove n € P for all n : IN. Remember that naturalness of n says that for any types A,
A’, relation Q C A x A’ we have (n,n) € (Q — Q) — (Q — Q).

The proof is in two steps (but a generalization of the naturalness-property may allow for a
single-step proof).

1. Take a predicate-like relation Q := {(n,n) | n € P}. The assumptions say (s,s) €
(Q — Q) and (z,z) € Q, hence by naturalness of n we get (ns,ns) € (Q — Q) and
(nsz,nsz) € Q, i.e. nsz € P.

2. What remains to prove is nsz = n, i.e. for any type A, f: A — A, a : A we must prove
nszfa = nfa.
Taking Q := {(m,z) : NX A | mfa = z}, naturalness guarantees (nsz,nfa) € Q provided
(s, f) € (@ — Q) and (z,a) € Q. But these properties hold by definition of s and z.

7 Overloaded operators

We remarked that polymorphic functions may not use overloaded operators, like an effective
equality-test (==4) : AXA — bool. However, if we require types instantiated for type-variables
to support certain operations, we can give similar requirements on relations. Such restrictions
may be provided explicitly by a “type class” in the language Haskell [13].

Definition. Let z be the class of types a with associated operations v; : Tj[a], and let A and
A’ be two “instances” of z with operations t; : T;[A] and t; : T;[A’]. Written in Haskell:

class z a where { v, :: Ti[a] ;3 -..5;3 vn t: Ti[e] }
instance z A where { v; =t ;; ...3; Un = tn }
instance z A’ where { vy =t} ;; ...;; Un =1 }

A relation R C 4 x A’ is said to respect class z, iff for each ¢, one has (t;,t}) € T3[R].

10
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For example, consider the class Eq of types a with equality-test:
class Eq a where (==) :: a -> a -> Bool

Relation R respects Eq iff for all (z,z’) € R, (¥,¥’) € R one has (z == y) = (¢’ == ¢’) : Bool.
Note that not all relations have this property, hence (==) is not natural. But one can prove
the following variant:

Restricted naturalness. If expression s has type S[a] for any instance a of class z as above,
expressed in Haskell by
s iz a=> 5

then for any relation R C A x A’ that respects z we have that (s,s) € S[R].

8 Application to inductive definitions

If V is a functor on types, then one may form the inductive type pV, being the initial (least)
type that has a constructor
C: V[uV] — p,V

and also vV, being the final (greatest) type that has a destructor:
D:vV — V[YV]

Two different recursion operators were given by Hagino [11] and Mendler [14]. Using naturalness
we can prove these to be equivalent: each is definable from the other one and can be shown to
have the same properties. We will concentrate on v-types.

The categorical approach from [11] (restricted to v-types with a single destructor) says: if
there is another type 7 with an arrow f : T — V[T then there is a unique mediating arrow
P(f):T — vV satisfying P(f);D = f;V[P(f)]:

Vp: T - vV.(p=P(f) = p;D = fiV[p]) (16)

So there is a conversion rule D(P(f)t) ~ V[P(f)](ft).

The recursive definition approach from [14] used containments like vV C a; we will use
explicit embeddings instead. The recursion principle says: for any type T, if for any type a,
in which vV is embedded via e : vV — @, and for which one assumes an induction hypothesis
h: T — a one has constructed a function gyeh : T — V[a], then there is a unique? solution
G(g): T — vV for p in the recursive equation p;D = g,v I p. So if

g:Va.(vV =a)—= (T - a)— (T - V]a]) (17)
then G(g): T — vV and:
Vp:T - vV.(p=G(g9) = psD=gwv 1p) (18)

Thus, the conversion rule is D(G(g)t) ~ ¢ I (G(g))t.

2Uniqueness is essential but was not mentioned by Mendler.

11
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Now we will prove the equivalence. Assuming (18) and f : T — V/[T] we can easily give a
definition for P(f), by finding a g such that gIp = f;V[p]:

P(f):= G(g) where g := Ae.Ah.f; V[h]
We check (16):

p=P(f)
p = G(Xe.Ah.f; V[h]) {definition}

= pD=fiV]  {19)
Conversely, assuming (16) and g satisfying (17) we must define the G(g) satisfying (18). If

we instantiate a to T' we cannot give an embedding e : vV — a. We take vV + T instead, and
get:

gv+r(inl)(inr) : T — VvV + T
To apply P we need some f: vV +T — V[yV + T}, so that P(f) : vV + T — vV. We take:
f = +-elim(D;V[inl], g(inl)(inr))
G(g) := inr;P(f)
We will use the following properties of +_elim. Distributivity property (20) is in fact a case of
naturalness.
p = +-elim(vg,v;) = inls;p=1vy A inr;p=1v; (19)
+ _elim(vo, v1) ;¢ = +-elim(vg 3 ¢, v15q) (20)
We will need a lemma stating I = inl; P(f). We have I = P(D) by (16) from I;D = D; V[I].
And we have:
inl; P(f) = P(D)
inl; P(f);D = D;V[inl; P(f)] {(16) for (inl;P(f))}
inl; f3V[P(f)] = D V[inl; P(f)]  {(16) for P(f)}
D;V[inl]; V[P(f)] = D; V[inl; P(f)] {definition f, +-elim}

1l

= true {V is a functor}
Now for (18):
p = inr; P(f)
E I =inl; P(f) A p=inr;P(f) {lemma}
= +-elim(I,p) = P(f) {(19)}
= +.elim(I,p);D = f;V[+-elim(I, p)] {(16) for P(f)}

+-elim(I,p);D = +-elim(D; V[inl], g(inl)(inr)); V[+elim(I,p)] {definition f}
+_elim(D, p; D) = +_elim(D ; V[I], g(inl)(inr) ; V[+-elim(I,p)]) {2x(20); +-elim}

n

1l

= D =D A p;D = g(inl)(inr) ; V[+-elim(I, p)] {(19)}
= p3;D = g(inl; +_elim(I, p))(inr; +elim(I, p)) {naturalness of g}
= piD=glp {+-elim}

Then we are done.

12
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The proof dualizes completely to u-types by reversing all (first order) arrows and composi-
tions. But the recursor for u-types can be generalized to dependent functions. If equality-types
are present then the uniqueness-condition is no longer needed for this recursor, because it will
allow for inductive equality-proofs in the language itself. In fact, using naturalness one can then
prove that the non-dependent recursor with a uniqueness-axiom is equivalent to the dependent
recursor without such an axiom.

Acknowledgement. Thanks are due to Roland Backhouse and Wim Hesselink for many
comments that greatly improved upon our presentation.
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Addition to ‘Naturalness of Polymorphism’, page 6.

We present a much easier and more general result about functors than the theorem on page
6.
Theorem. If a type- and relation-constructor © is also naturally defined on functions such
that Op: ©A4A — QA’ forp: A — A’, and Ol 4 = Jey,
then (@p) = ©(p) for all functions p, and O is a functor (i.e. it preserves composition). So the
parentheses can be safely omitted.

Proof. Remark first that, by the definition of graph and of the —-constructor, we have for

QCAxA"
(P)CQ = (I4,p)EA—Q

and
Qc(r) = (pla)eEQR—-A
Thus:
(©p) C O(p)
= (le4,0p) € ©A — O(p)
= (OI,,0p)€ OA — O(p) {O preserves identity}
& (I14,p) € A= (p) {Naturality of ©}
= (p) C (p)
Conversely:
o(p) € (0p)
= (Gp, I@AI) € O(p) — QA
= (0p,0I4)€ O(p) —» ©A’ {O preserves identity}
<= (p,Iar)€(p) — A {Naturality of ©}

() € (p)

Thus (©p) = O(p).
For composition, suppose p: A — B and g: B — C. Then (pig, q) € (p) — C.
So by naturality (©(p;g), ©¢) € Op — OC, i.e. ©(pigq) = Op; Oq.
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