
UNIVERSITY OF GRONINGEN

Inductive Types in
Constructive Languages

Peter J. de Bruin

March 24, 1995

Abstract

Logic grammar is used to partly define a formal mathematical language “ADAM”,
that keeps close to informal mathematics and yet is reducible to a foundation
of Constructive Type Theory (or Generalized Typed Lambda Calculus). This
language is employed in making a study of inductive types and related subjects,
as they appear in languages for constructive mathematics and lambda calculi. The
naturality property of objects with type parameters is described and employed.

Cover diagram

Behold the mathematical universe,
developing from original unity
into categorical duality.

The central beam contains
the initial and the final type,
together with the remaining flat finite types.

It is flanked by the dual principles
of generalized sum and product,
and of initial and final fixed point construction.

Printed by: Stichting Drukkerij C. Regenboog, Groningen.

RIJKSUNIVERSITEIT GRONINGEN

Inductive Types in
Constructive Languages

Proefschrift

ter verkrijging van het doctoraat in de Wiskunde
en Natuurwetenschappen aan de Rijksuniversiteit
Groningen op gezag van de Rector Magnificus Dr.
F. van der Woude in het openbaar te verdedigen op

vrijdag 24 maart 1995 des namiddags te 4.00 uur

door

Peter Johan de Bruin

geboren op 20 september 1964 te Harderwijk

Promotor: Prof. dr. G.R. Renardel de Lavalette

Preface

The fascination for mathematical truth has been the driving force for my research
as it had been for my master’s thesis written in Nijmegen. Being amazed at the lack
of a general language for the irrefutable expression of mathematical argument, I
looked for it in the direction of what is called Type Theory. I started my research
in Groningen in 1988 under supervision of Roland Backhouse, and enjoyed his
discussion club with Paul Chisholm, joyous Grant Malcolm, Albert Thijs, and
broadly interested Ed Voermans. When Backhouse moved to Eindhoven in 1990,
I and Thijs remained in Groningen and our roads parted.

The advent in 1991 of Gerard Renardel who accepted to take up my supervision
with fresh interest, started a new period of seeking to assemble all available pieces.
I owe him much for his constant trust and support in keeping up courage, his help
in formulating ideas, his effort to curtail outgrowing branches, and for leaving the
choice to carry this work through entirely to me. I also thank Jan Terlouw for his
modest cooperation, and my fellow Ph.D. students for their good company and
friendship.

Now my heart has turned from abstract truth to living Truth, and since 1993
I’m living in community Agapè of the Blessed Sacrament Fathers in Amsterdam.
I am glad to thank its members, Aad, Eugène, Gerard, Herman, Jan, Paul, Pieter,
and Theo, for their support while finishing this thesis. I thank the members
of the Ph.D. committee, Roland C. Backhouse (Eindhoven), Wim H. Hesselink
(Groningen), Gerard R. Renardel de Lavalette (Groningen), and Michel Sintzoff
(Louvain-la-Neuve), for accepting this duty and providing kind comments on the
manuscript, especially Wim who gave detailed comments which helped me to pre-
pare the final text. Though it is tough material, my presentation sometimes being
terse and not all ideas given sufficient scientific support, I hope you will get a catch
of its beauty.

Peter de Bruin

1

Contents

Summary 5

1 Introduction 7
1.1 Mathematical language . 7
1.2 Our approach to mathematical language 8
1.3 Type Theory and Set Theory . 10
1.4 Related efforts . 11
1.5 Relational calculus . 12
1.6 ADAM’s Type Theory . 12
1.7 Aspects of induction and recursion . 13
1.8 Frameworks for studying induction . 14
1.9 Our treatment of induction and recursion 15
1.10 Other kinds of inductive types . 16
1.11 Original contributions . 16

2 The language ADAM 18
2.1 Language definition mechanism . 18
2.2 Basic grammar of ADAM . 20
2.3 Production rules . 23

2.3.1 Terms . 23
2.3.2 Patterns . 23
2.3.3 Definitions . 24
2.3.4 Declarations . 25
2.3.5 Coercion . 25

2.4 Types and universes . 26
2.5 Products and function spaces . 27
2.6 Sums and declaration types . 29
2.7 Families and quantifiers . 31
2.8 Finite types . 31
2.9 Infinite types . 33
2.10 Equality predicate . 33
2.11 The type of propositions . 34
2.12 More derived notions . 36

2.12.1 Predicates . 36
2.12.2 Subtypes . 36

2 CONTENTS

2.12.3 Subsets . 37
2.12.4 Relational notations . 37
2.12.5 Currying . 38
2.12.6 Pattern matching . 39
2.12.7 Linear proof notation . 39

2.13 Conclusion . 39

3 Common induction and recursion principles 40
3.1 Examples of inductive types . 40
3.2 More on natural numbers . 43
3.3 Inductive subset definitions . 44

3.3.1 Sets inductively defined by rules 44
3.3.2 The well-founded part of a relation 45
3.3.3 Inductive definitions as operators 47
3.3.4 Fixed points in a lattice . 47

3.4 From induction to recursion . 48
3.5 Conclusion . 49

4 Categories and algebra 50
4.1 Categorical notions . 50
4.2 Algebras and signatures . 53
4.3 Initial algebras, catamorphisms . 54
4.4 Algebras with equations . 57
4.5 Initial algebras related to well-founded relations 60
4.6 An aside: monads . 61
4.7 Algebraic Specification . 63
4.8 Concluding remarks . 64

5 Specifying inductive types 65
5.1 Single inductive types . 65

5.1.1 Operator domains . 65
5.1.2 Operators with arity . 67
5.1.3 The wellordering of a single inductive type 68

5.2 Mutually inductive types . 68
5.2.1 Using an exponential category . 69
5.2.2 Plain algebra signatures . 70

5.3 Production rules for polynomial functors 71
5.3.1 Positive type expressions . 72
5.3.2 A type of polynomial functors . 72

5.4 Adding equations . 72
5.5 Conclusion . 73

6 Recursors in constructive type theories 74
6.1 Algebraic recursion, or paramorphisms . 74
6.2 Recursive dependent functions . 76
6.3 Mendler’s approach . 78

CONTENTS 3

6.4 Recursors for mutual induction and recursion 81
6.5 Summary . 83

7 Co-inductive types 85
7.1 Dualizing F -algebras . 85
7.2 Anamorphism schemes . 87
7.3 Dual recursion . 89
7.4 Dual equations . 90
7.5 Terminal interpretation of equations . 90
7.6 Conclusion . 91

8 Existence of inductively defined sets 92
8.1 Using transfinite ordinal induction . 92
8.2 Kerkhoff’s proof . 94
8.3 Algebras with equations . 96

9 Partiality 98
9.1 Domain theory . 98
9.2 Optional objects . 101
9.3 Building recursive cpo’s by co-induction 103
9.4 Recursive object definitions . 104
9.5 Conclusion . 106

10 Related subjects 107
10.1 Impredicative type theories . 107

10.1.1 Weak initial algebras . 108
10.1.2 Weak final algebras . 109

10.2 Using type-free values . 109
10.2.1 Henson’s calculus TK . 109

10.3 Inductive universe formation . 110
10.4 Bar recursion . 112

11 Reflections and conclusion 113
11.1 Mathematical language . 113
11.2 Constructive Type Theory . 114
11.3 Language definition mechanism . 115
11.4 Proofs and proof notation . 116
11.5 Inductive types . 117
11.6 Directions for further research . 118

A Set theory 120
A.1 ZFC axioms . 120
A.2 Set encodings . 121
A.3 Ordinals . 122
A.4 Cardinals . 122
A.5 A model of ZFC . 123

4 CONTENTS

A.6 An inductive model of ZFC . 124
A.7 Anti-foundation . 125

B ADAM’s Type Theory 126
B.1 Abstract syntax . 126
B.2 Meta-predicates . 127
B.3 Universes . 129
B.4 Products . 129
B.5 Sums . 130
B.6 Finite types . 130
B.7 Naturals . 130
B.8 Equality . 131
B.9 Existential propositions . 131
B.10 Semantics . 132
B.11 More derived notations . 134

C Proof elimination in Type Theory 135
C.1 Introduction . 135
C.2 The basic system . 137
C.3 Strong existence . 137

C.3.1 New rules . 137
C.3.2 Difficulties with reduction to canonical form 138

C.4 Applications . 139
C.4.1 Iota . 139
C.4.2 Quotient types . 139
C.4.3 Inductive types . 142

C.5 Conclusion . 143

D Naturality of Polymorphism 144
D.1 Introduction . 144
D.2 Polymorphic typed lambda calculus . 146
D.3 Turning type constructors into relation constructors 147
D.4 Naturality of expressions . 148
D.5 Applications . 151
D.6 Dinatural transformations . 153
D.7 Second-order languages . 154
D.8 Overloaded operators . 155

Index 156

Bibliography 160

Samenvatting (Dutch summary) 165

5

Summary

This dissertation deals with constructive languages: languages for the formal expression
of mathematical constructions. The concept of construction does not only encompass
computations, as expressed in programming languages, but also propositions and proofs,
as expressed in a mathematical logic, and in particular the construction of structured
mathematical objects like sequences and trees. Types may be conceived of as classes of
such objects, and inductive types are types whose objects are generated by production
rules.

The purpose of this dissertation is twofold. First, I am searching for languages in
which the mathematician can express his inspirations well structured, correct, and yet
as freely as possible. Secondly, I want to collect the diverging approaches to inductive
types within one framework, so that it becomes apparent how the diverse construction
and deduction rules arise from a single basic idea and also how these rules may be
generalized, if desired. As basic idea I use the concept of initial algebra from category
theory.

My research into mathematical languages has not led to a complete proposal. The
present treatise is confined to general reflections and the partly formal, partly informal
description of a language, ADAM (chapter 2). This language serves subsequently as
a medium for the study of inductive types, which constitutes the main body of the
dissertation.

The set-up of ADAM is as follows. To guarantee the validity of arguments expressed
in the language, it needs a sound foundation. I develop a constructive type theory (called
ATT) for this, a combination of the “Intuitionistic Theory of Types” of P. Martin-Löf and
the “Calculus of Constructions” of Th. Coquand. In order to comprise all mathematical
principles of deduction, I add the iota or description operator of Frege. It is not necessary
to include inductive types as a basic principle; natural numbers suffice to construct these.

On this foundation I build the language ADAM by looking at how constructions and
proofs that I encountered or drafted could be formulated as naturally as possible while
adhering to the rules of type theory. The formal definition of ADAM , as far as it is avail-
able, and its semantics in the underlying type theory are simultaneously given by means
of a two-level grammar. This makes it in principle possible to extend the language, while
preserving validity, with notations or sublanguages for special applications, like program
correctness. The proposed notations should therefore not be regarded as immutable.
Perhaps the only typical language element is the notation for (and the consistent use of)
families of objects.

As a preparation for inductive types, I start with rendering the classical approaches

6 SUMMARY

to inductive definitions (chapter 3), followed by the introduction of the machinery which
we require—elementary category theory and algebra (chapter 4).

The central part of the treatise consists of the description and justification of in-
ductive types as initial algebras. First, I consider at an abstract level the various ways
of specifying inductive types, and how these specifications designate (via a polynomial
functor) an algebra signature, possibly with equations (chapter 5). Next, I analyse and
generalize the ways of defining recursive functions on an inductive type (chapter 6).
Then I investigate to what extent these construction principles can be dualized to co-
inductive types, which are final co-algebras (chapter 7). Finally, I construct, using either
elementary set theory or type theory, initial algebras and final co-algebras for an arbi-
trary polynomial functor, which actually proves the relative consistency of all discussed
construction principles in relation to ADAM ’s Type Theory ATT (chapter 8).

The dissertation is concluded with the treatment of some issues related to inductive
types. In chapter 9, I consider recursive datatypes with partial objects, as they occur
in programming language in which one should reckon with possibly non-terminating
program parts. I summarize the required domain theory, and construct such domains
in ADAM using final co-algebras. In chapter 10, I briefly discuss inductive types in
impredicative languages, types as collections of type-free values, and the principle of
bar induction, and I suggest the possibility of inductive definition of new type universes
within a type theory. Chapter 11 gives a number of further reflections on mathematical
language and proof notation, and summarizes the approaches to inductive types.

The appendices contain the basic principles of set theory and of ATT, the required
addition of either the iota operation or proof elimination to type theory, and a study
of uniformity properties (naturality) of polymorphic objects, which I need on certain
occasions.

7

Chapter 1

Introduction

This thesis circles around two themes that closely intertwine: formalized mathematical
language, and inductive types. We speak about the former in section 1.1–1.6, resulting
in the language description in chapter 2; inductive types are addressed in 1.7–1.10 and
fill the major part of the thesis. The remaining sections of this chapter introduce some
basic concepts for further use.

1.1 Mathematical language

Mathematical language is a field of interest that is shared by mathematicians and com-
puting scientists. For mathematicians firstly as a medium to express their abstract
thinking, secondly as the subject of formal analysis itself.

The computing scientist stands in between these two approaches. For the theoretical
analysis of computing, (s)he needs a medium of expression just as the mathematician.
But he is also fascinated by the possibility of rendering mathematical treatises accessible
for computer manipulation, in order that computers may assist in creating, verifying,
and transforming mathematical texts.

Here a yawning gap appears. For the mathematician excels in creative use of his
language, inventing new styles of notation, new modes of reasoning. The formalist on
the other hand requires a well-defined system of permitted notations and deduction steps.
This may include a scheme for introducing some sort of new notation, yet time and again
the language user will find good reason to step outside the provided schemes in order to
attain more clarity of expression. Especially when the deduction steps themselves have
to be noted down, formal calculus becomes too cumbersome for most application fields.

Our primal impetus was to work on diminishing this gap by developing a kind of
universal calculus. On the one hand it would contain a sound definition of correct
mathematical construction and deduction principles, complete for all practical purposes.
On the other hand it should permit the user a freedom of notational definition that
restricts him as little as possible.

Needless to say, this is an ideal, floating in the air, that we can hardly expect to
realize on earth. Not letting ourselves be dispirited by this, we have tried to grasp the
inspirations we received and to mould them into concrete form. Our second theme,
inductive types, has served as a playground to gain experience in using our notational

8 CHAPTER 1. INTRODUCTION

ideas. At the same time, our treatment of inductive types contains in abstract form the
various forms in which inductive types appear in other languages.

The formal realization of these ideas has often been unruly, and we apologize for the
defects in our present work. Some ideas are not worked out in full detail, but there are
also ideas whose formalization would require extensive elaboration and reconsideration
of the language set-up.

We call the resulting language ADAM , as we hope virtually all of mathematics to
appear among its offspring, and also in honor of the city of Amsterdam, which name
abbreviates to A’dam.

1.2 Our approach to mathematical language

To begin with, let us note that our aim is a language that serves as a universal medium
of mathematical expression, not a calculus that is directed at specific purposes such as
problem solving through formal manipulation of the language expressions themselves.
Rather, it should be possible to embed any specific calculus within the language. This
aims in particular at programming logics, that describe the semantics of particular pro-
gramming languages.

When offering the user notational freedom and brevity, one cannot avoid that some
standard or user-defined notations may overlap. Thus, the possibility of ambiguity is
inherent in our approach. Furthermore, the user should have the option to omit some
details when he expects these to be obvious or reconstructible by the reader. In either
case, it is the responsibility of the user (writer) to keep his text comprehensible.

Yet, the language should have a sound formal foundation, guaranteeing all results
to be correct. We were drawn to use Constructive Type Theory (or Generalized Typed
Lambda Calculus), being attracted by its elegant unified treatment of proofs and objects,
and of finite and infinite products and sums. Besides the construction principles that
are directly related to the basic type constructors, one needs some additional axioms to
obtain a full foundation. Rather than leaving each user to establish his own foundation,
we prefer to establish a fixed foundation for common use. For foundational research, one
may of course study alternatives.

In shaping the notations of ADAM , we looked at the established notations of mathe-
matics, making some adaptations to give them a more regular type structure. A typical
example is the notation for set formation.

Example 1.1 Traditionally, one writes

{ f(x) | P (x)} (1.1)

for the set containing f(x) for all x such that condition P (x) holds. This notation does
not indicate which of the variables occurring free in f(x) and P (x) are locally bound.
A minor objection is that it may be necessary to look ahead to the condition P (x)
before one can fully understand expression f(x). In the ‘Eindhoven quantifier notation’,
introduced by E.W. Dijkstra, one writes

{x : P (x) : f(x) }

1.2. OUR APPROACH TO MATHEMATICAL LANGUAGE 9

to overcome both problems. When using generalized types, the variable has to be typed;
furthermore, typings and conditions are both assumptions to be treated on a par, so we
move the condition to the left of the colons, where an arbitrary declaration (sequence of
assumptions) may appear. In this case, we get:

{x:A; P (x) :: f(x) }

For the special case when f(x) is just x, we introduce a notation similar to (1.1):

{x:A |: P (x)} := {x:A; P (x) :: x }

The interesting thing about these notations for sets is that they are suited to be
used for logical quantifiers and generalized constructors too. This will be described in
section 2.7.

1.2.1 Defining ADAM. To define the basic syntax and simultaneously all correct-
ness requirements of ADAM , we use the powerful mechanism of two-level grammar,
containing Horn-clause logic, which is described in section 2.1. Ideally, this grammar
mechanism should be available within ADAM itself, so that the user may introduce new
non-conventional notations, special-purpose calculi, or other (programming) languages.

The definition of ADAM proceeds in the following stages:

1. Description of the language definition mechanism

2. Definition of the underlying type theory using Horn clauses

3. Definition of the abstract and concrete syntax classes and their production rules,
which reduce the meaning of language constructs to type theory

4. Development of a body of useful theory and notations

Actually, our definition is not so systematic. The definition mechanism is not described
in full detail, and points 3 and 4 are mingled. Some language features are defined only
partially, or described merely by a suggestive example, as their full formalization would
go beyond the scope of this thesis.

1.2.2 Our use of ADAM. The main body of this thesis uses both ADAM and
informal proof notation, but it can be thought of as encoded wholly in ADAM . This
stands in contrast with appendix D, where typed lambda calculus is used as the object
of study itself, rather than as a medium of expression.

We use ADAM mainly to formulate principles of inductive types, to justify them
and establish relationships between them. As such, ADAM both provides a unifying
framework in which principles from many different languages can be represented, and
gives a sound foundation to these principles.

10 CHAPTER 1. INTRODUCTION

1.2.3 Semantics. The semantics of ADAM is given by its type theory, named ATT.
The rules of ATT may be regarded as a foundation for mathematics, yet for better un-
derstanding we outline an interpretation in extended set theory in section B.10. We have
not studied more “mathematical” models like PER models (based on partial equivalence
relations on a simple set) or categorical models [44], but we remark that finding such
models may be very difficult, because of the sheer strength of ATT, transcending ZFC
set theory.

1.3 Type Theory and Set Theory

The foundation of mathematics is usually sought in axiomatic set theory: all mathemat-
ical objects are assumed to exist within a single universe of sets, where each set consists
of other sets.

In a formalized language, it is convenient to have all objects classified into types, in
order to avoid anomalies. In such a typed language, one cannot speak about an object
without specifying its type, and one may only apply operations to objects of appropriate
type. For example, it does not make sense to compare two objects of different types.

A simple type system consists of a number of primitive types together with a number
of finitary type constructors. The class of simple type expressions can be algebraically
defined prior to the further language definition. A typical language is Typed Lambda
Calculus, with type constructors like function space, finite cartesian product, and disjoint
sum, and possibly inductive or user-defined types. It has term rewrite (or reduction)
rules operating on lambda terms, not on type expressions.

A generalized type system contains infinitary type constructors as well. As any
concrete type expression is necessarily finite, type expressions have to be parameterized
with object variables. The typical type constructor is the generalized product

∏
x:ABx

for a type A and a type Bx for any object x of type A. The product is written as
Π(x:A :: Bx) in this thesis. Its inhabitants are tuples that contain, for any object x:A,
an object bx:Bx. Such a tuple is written as (x :: bx) in this thesis.

Due to the generalization, object expressions may appear within type expressions.
Thus, both have to be defined simultaneously, and rewriting may affect type expressions
too. Type correctness (validity) and equivalence of expressions are usually inductively
defined as meta-predicates (also called judgements) on contexts, object and type ex-
pressions. The resulting system, consisting of expressions and judgements defined by
derivation rules, is called a type theory.

We are interested in constructive type theories (CTT’s), which are generalized type
theories based on lambda calculus in such a way that any valid expression of some type
provides a mathematical construction for that type. The typical example is a disjoint
sum type B0 + B1; a closed expression of this type must reduce to a canonical form
containing an expression either of type B0 or type B1. One can even have empty types,
for which there are no closed expressions.

An interesting point is that constructive type theory immediately accommodates
predicate calculus. When we identify any proposition with a type that contains all proofs
of that proposition, all propositional connectives and quantifiers coincide with standard
type constructors. Notably, the universal quantifier proposition ∀x:A.Px becomes the

1.4. RELATED EFFORTS 11

generalized product Π(x:A :: Px). The proposition is true exactly when its proof type
has an inhabitant, and any valid object expression of this type provides a proof of the
proposition. This is called the propositions-as-types principle.

If one needs higher-order quantification, i.e., propositions that quantify over all sub-
sets of a type, one has to make a formal distinction between propositions and data types.
In fact, one assumes propositions to be given a priori, before the hierarchy of types has
been generated. This is called impredicativity.

To justify constructive type theory, one may seek for a set-theoretic model. However,
the basic rules of CTT are so fundamental, that one may just as well consider it to
constitute an alternative foundation of mathematics, which replaces axiomatic set theory.
We outline two models of set theory within extended type theory in section A.5 and A.6,
and a model of type theory within an extended set theory in B.10.

1.4 Related efforts

Several mathematical languages based on type theory have been developed. Note that
we do not regard a bare logical derivation system, like first or higher order logic, as
a mathematical language, because it provides no notation for proofs other than as a
sequence of statements.

N.G. de Bruijn developed Automath (in many variants) [11] exactly to provide an
automatically verifiable notation for definitions and proofs in any logical calculus. It has
only one principle of type construction (namely generalized product), which suffices for
allowing the user to axiomatically introduce any type, object, or proof constructor he
would need as a so-called “primitive notion”. The necessity to write down all parameters
of each constructor made Automath rather unwieldy to use. The Mathematical Vernac-
ular (MV) [12] was introduced to overcome this: it allowed more syntactic freedom and
the possibility to omit parts of a construction. This inhibits automatic verification.

P. Martin-Löf formulated his Intuitionistic Type Theory (ITT) [56] in order to expli-
cate the basic principles of intuitionistic reasoning. Its basic type structure is very much
like Automath, but it includes a number of construction principles (including inductive
types) that provide a sufficient logical foundation for many purposes. It does not have
impredicative propositions, as this is contrary to intuitionistic philosophy. The way ITT
treats the equality predicate, internalizing it by means of “equality types” (sometimes
called “identity types”), generates some anomalies in the type structure. Because of this,
and the omission of some type parameters, type correctness (validity) of expressions may
itself require a non-trivial proof.

R.L. Constable’s Nuprl [18] is an interactive computer implementation of a variant of
ITT. It assists the user in finding valid expressions, by following the approach introduced
by the automated programming logic Edinburgh LCF (Logic of Computable Functions)
[35, 70] to employ a functional programming language, the “meta-language” (ML), which
is offered to the user who may call on predefined or user-defined “tactics” that perform
a goal-directed search for valid expressions. (This special-purpose language ML has
developed into the general-purpose language Standard ML, SML.) Nuprl provides a
notation for the search process, recursively listing all goals and subgoals.

12 CHAPTER 1. INTRODUCTION

Th. Coquand’s Calculus of Constructions (CC) [21] is a type theory based on impred-
icative quantification and has been implemented in LCF-style, too. Type constructors
as used in typed lambda calculus can be defined using impredicative quantification, but
no induction rule can be derived inside the calculus. C. Paulin-Mohring extended CC
with embedded principles for inductive types [73, 68], which were implemented in the
system Coq.

A more direct style of interactive proof editing was designed by Th. Coquand and B.
Nordström and implemented in Göteborg as the ALF proof editor [50]. Being based on
ITT with inductive definitions, it allows direct manipulation through a multiple-window
presentation of the current state of the proof object, which may contain “placehold-
ers” for incomplete parts. There are windows for the current theory, the proof under
construction, the current list of placeholders (or goals) with their type and context,
and equational constraints on the placeholders. It features a nice syntax for recursive
definition through pattern matching, described in [23].

M. Sintzoff’s calculus DEVA [78, 85] comes closest to our goal, because of the much
greater attention it pays to the readability of the resulting proof and object expressions.
It offers more structuring primitives, such as a kind of labeled records with dependent
field types. DEVA distinguishes between explicitly and implicitly valid expressions. The
former are verifyably correct proof or object constructions, the latter “amount to devel-
opments with missing parts, e.g. incomplete proofs and tactics. They are characterized
by the undecidable existence of an explication, which completes the missing parts and
yields a valid expression.”1 These explications go further than the missing proofs of De
Bruijn’s MV, but do not give the full power of ML-tactics.

1.5 Relational calculus

Now and then we use relational notation for easy expression, and sometimes proof, of
properties. Such notations are being developed by a group around Backhouse into a
calculational method for deriving programs from specifications [1]. There is an essential
difference between this use of relations and ours: the relational calculus employs relations
to model (possibly nondeterministic) input-output behavior, making much use of relation
composition, while we use relations to establish relationships between functions and
other objects, using arrow composition but hardly ever relation composition. A study
of inductive properties in relational calculus is given in [8].

1.6 ADAM’s Type Theory

The language ADAM is based on a type theory, ATT, that combines the features of
Martin-Löf’s ITT and Coquand’s CC. Thus, it has a set of basic type constructors com-
bined with impredicative propositions, and almost all typed lambda calculi appear as
subsystems. There is, however, one gap that hinders the coding of arbitrary mathe-
matical proofs: given a constructive proof that a predicate has a unique solution, one

1Weber in [84]

1.7. ASPECTS OF INDUCTION AND RECURSION 13

cannot obtain within the calculus a term denoting that solution. To mend this, we add
a stronger elimination rule for the existential quantifier, described in appendix C.

We have the following construction principles and axioms:

1. Generalized products (Π). These subsume the function space constructor.

2. Generalized sums (Σ).

3. Finite types (0, 1, 2, . . .). Combined with generalized products and sums they give
finite products and sums. Many recursion constructs can already be expressed
using only these and function space, but extra equational calculus is needed to
express their properties.

4. A hierarchy of universes (Typei).

5. Impredicative propositions (Prop), turning Typei into a topos [46] and yielding
higher order logic.

6. Equality types, i.e., an internal equality predicate (x =A y).

7. Strong existential elimination (∃ elim or the description operator ι). This is our
new extension, see appendix C.

8. Infinity (ω). Together with the preceding principles it allows us to construct a
representation for all inductive types, as we will see in chapter 8.

9. Axiom of choice, needed because propositions are distinguished from types.

10. Finally, one may also think of adding classical propositions, for which the principle
of reductio ad absurdum holds.

The exact rules are listed in appendix B.

1.7 Aspects of induction and recursion

In philosophy, induction stands often for the process of discovery of a general statement
out of some particular cases: “In all the umpty cases we encountered we found that
statement P held, which induces us to suppose that P holds in all cases.” This is not
what we mean by induction in this thesis.

In mathematics, induction may be understood as the production of an infinite set
of things through iterated application of a fixed set of rules. One distinguishes between
inductive definition and inductive proof.

Inductive definition signifies the definition of a set as the totality of all objects pro-
duced through iterated application of a fixed set of production rules.

Inductive proof signifies proving a general statement by giving proof steps that in-
crementally produce proofs for all individual instantiations of the statement.

Recursion stands basically for the (re-)occurrence of an object within a description
of that very object. Such a description is not necessarily a valid definition of the object:
it may be seen as an equation x = f(x) which can have either no, a single, or multiple

14 CHAPTER 1. INTRODUCTION

solutions. Yet under suitable restrictions recursive equations have unique solutions, so
that they may be used for definition. Alternatively, one can use a complete partial order
so that suitable recursive equations have unique least solutions. In most applications,
the object x under definition is itself a function.

The notions of induction and recursion overlap. On the one hand, any inductive
type definition can be written as a recursive type equation; this is in fact what happens
in most programming languages that allow such types. Inductive proofs can, within
a suitable calculus with dependent types, be written as recursive dependent function
definitions. On the other hand, a valid recursive function definition can be reduced to
an inductive predicate definition (as a kind of set) together with an inductive proof that
this predicate constitutes a function.

The phrase recursive is often taken to denote effectively computable. The branch of
mathematics called (classical) recursion theory [65] deals with hierarchies of computable
functions on natural numbers, and studies their complexity. Computational complexity
falls outside the scope of this thesis.

1.8 Frameworks for studying induction

There are several quite different notions of inductive sets; there are many ways inductive
types can be described; and there are many settings, languages, or frameworks in which
one may introduce inductive types. A brief survey follows.

1.8.1 Set theory. The foundational justification for the use of induction may be
found in set theory (using for example the Zermelo-Fraenkel axioms of powersets, infinity,
union etc.). The simplest interpretation of an inductive set definition is that it denotes
the intersection of all sets that are closed under the rules of the definition. It follows
immediately that proof by induction is valid for this set, but the construction is only
welldefined if one has already some domain that is closed under the rules. Otherwise,
one can iterate application of the rules to get a possibly transfinite series of sets, and
take its limit. Under a certain restriction this limitset is closed under the rules indeed.

1.8.2 Type theory. An alternative foundation for mathematics is provided by Con-
structive Type Theory in the sense of Martin-Löf [56], which is a generalization of typed
lambda calculus. In these systems a principle of inductive (data-)type construction can
be included as basic. Extensive use is made of dependent types; in particular the type
of the result of a recursive function may usually depend on its argument value. As types
can represent propositions, the recursion axiom can be used for inductive proofs as well.
Thus, while classically recursion is reduced to induction, type theory reduces induction
to recursion.

An advantage of dependent types is that one can easily handle constructors that
have an infinite number of arguments, as opposed over the ordinary use of types in, for
example, purely finitary algebraic theories.

N.P. Mendler introduced [59] an alternative recursion construct that employed a
quantification over types and a subset relation on types. It is not obvious how this
construct relates to the ordinary ones. We will use the naturality property of polymorphic

1.9. OUR TREATMENT OF INDUCTION AND RECURSION 15

objects to show that Mendler’s construct has in fact the same power as the ordinary
(dependent) recursion rule, at least when we replace the subset relation by explicit
mappings. (See section 6.3.)

1.8.3 Category theory. Category theory captures inductive types in a particularly
simple axiom about initial algebras. No recursive functions with dependent types are
used nor is there an induction axiom, but there is a uniqueness condition from which
these may be derived. Categorical notions and the initial algebra axiom can easily be
put in a type-theoretical context. In fact, the general formulation of several alternative
recursion axioms, too, is most easily expressed when using categorical notions. The cat-
egorical notions do also allow a very simple generalization to mutual and parametrized
inductive definitions, for each construct. There are, however, other parametrized recur-
sion constructs possible that are sometimes easier to use.

1.8.4 Impredicative type theories. Ordinary Constructive Type Theory does not
allow to form types by quantification over the class of all types, as such a principle is
intuitively not well-founded, and indeed inconsistent with some other constructs of type
theory. However, such impredicative quantification can be added to either simple typed
lambda calculus, resulting in polymorphic lambda calculus, or to a calculus with depen-
dent types. This is done in the Calculus of Constructions of Coquand [21]. It allows the
construction of inductive types for which there is a recursion construct, without using
extra axioms. Unfortunately one cannot derive an induction rule inside the calculus,
although it may be possible to prove outside the calculus, using a generalized naturality
theorem, that the induction principle does hold. One might just assume a primitive in-
duction axiom. When subtypes are available one is indeed able to construct an inductive
type that has an induction rule. (See subsection 10.1.1.)

1.9 Our treatment of induction and recursion

In this thesis, we shall describe inductive types as they appear or might appear in various
typed languages. Using ADAM all the time, we start with the traditional description
of inductive sets by means of well-founded relations. Then we move to the categorical
framework, which will be our main tool to bring various induction principles under a
common denominator.

Our treatment is separated into construction principles for inductive types, and re-
cursion principles over inductive types. The former, discussed in chapter 5, describe for
which forms of algebra signature an initial algebra does exist. The latter, discussed in
chapter 6, describe the forms which a total function definition using structural recur-
sion over an inductive type may take. These rules suggest possible language rules for
including inductive types in other constructive languages. Any such rule may be taken:

• either in its full generality, if the language includes all primitives that we use in
the formulation of the rule,

• or in a more restricted form. For example, instead of a generalized product Π(x:A ::

16 CHAPTER 1. INTRODUCTION

Bx) one might allow only finite products B0 × B1, parametrized types BA, and
combinations of these.

In chapter 8 we construct algebras in ADAM that satisfy the given induction and
recursion rules. This proves the relative consistency with respect to ATT of these rules.
It also proves the relative consistency of other calculi with inductive types that are
directly embedded in ATT, like ITT and CC.

1.10 Other kinds of inductive types

Apart from inductive sets or types as mentioned in section 1.7, there are other kinds of
inductive type definitions to which we shall give some attention.

1.10.1 Co-induction. In chapter 7, we see how the categorical description of induc-
tive types can be dualized to describe final coalgebras, also called co-inductive datatypes.
These model tree structures that may be infinitely deep, while staying in a pure setting
that contains only total functions and totally defined objects. All recursion constructs
can be dualized too, provided the usage of dependent functions is removed. One has to
add a uniqueness condition in order to preserve completeness. The set interpretation of
these objects is not evident, as infinitely deep sets conflict with the foundation axiom of
standard set theory, but they may interpreted as graphs (section 8.2).

1.10.2 Domain theory. An entirely distinct notion of recursion is used in pro-
gramming languages. Here it is often allowed to define types and objects in terms of
themselves, without significant restrictions. This may result in partial or infinite ob-
jects, where it is effectively undecidable whether some part of an object is defined or
not. Domain theories, such as the theory of Complete Partial Orders, were developed
to give meaning (semantics) to such recursive definitions.

In chapter 9, we will describe several rules for reasoning about partial objects. We
show how partial or infinite objects can be modeled by co-inductive datatypes, and how
lazy recursive object definitions, with possibly nonterminating parts, can be interpreted
in this model.

1.10.3 Inductive universe formation. The intuitive justification for the set-theore-
tical axioms is in fact an extraordinary kind of inductive set definition itself: one where a
big set is generated such that each generated element is associated with a set itself, and
where the production rules may use this associated set. In section 10.3, we suggest that
existence of such big sets may be presented as a general principle, and name it inductive
universe formation.

1.11 Original contributions

The main contribution of this thesis consists first of the presentation of an alternative
view on the development of formal mathematical language, secondly of the description

1.11. ORIGINAL CONTRIBUTIONS 17

and generalization of principles of inductive types in constructive languages, within a
coherent framework.

In the course of this work, we presented a number of constructions and proofs. We
think the following ones are minor contributions of this thesis:

• The introduction of strong existential elimination into constructive type theory
(appendix C)

• The equivalence proof between non-dependent Mendler recursion and initiality
(theorem 6.4), using naturality

• The generalized formulation of liberal mutual recursion (paragraph 6.4.3)

• The dualization of algebras with equations (section 7.4)

• The proof that Kerkhoff’s initial algebra construction can be dualized (theorem 8.3)

• The construction of recursive cpo’s by means of co-induction (paragraph 9.2.3
and section 9.3), and the interpretation of recursive object definitions within this
representation (section 9.4)

• The inductive model of Zermelo-Fraenkel set theory in type theory (section A.6)

• The derivation of dinaturality from naturality (section D.6)

Furthermore, we have obtained a few not very remarkable results, for which we yet do
not know whether they are known in the literature. These are:

• The relation between monads and initial algebras (theorem 4.6)

• The model of set theory within type theory by means of directed graphs (sec-
tion A.5)

18

Chapter 2

The language ADAM

In this chapter we introduce our mathematical language named ADAM . It serves to pro-
vide clear and precise notations for mathematical constructions based on strong typing,
including generalized products and sums.

ADAM is based on a formal system, ATT, that is an extension of Martin-Löf’s
Intuitionistic Type Theory. This type theory is described in appendix B, but it is not
necessary to study it separately if one has some acquaintance with generalized type theo-
ries. The primitive notions that are included are generalized products, generalized sums,
finite types, a cumulative hierarchy of universes, a universe of propositions, impredica-
tive quantification for propositions, the equality predicate, and existential propositions
with strong elimination. Furthermore, there are no inductive types except a type of
natural numbers. The system is powerful enough to serve as a mathematical foundation
of ADAM , for set theory (ZFC) can be encoded in it, using the first universe. Con-
versely, all primitives can be given a set-theoretical interpretation (section B.10) within
ZFC extended with a hierarchy of universes, so we have a set-theoretical semantics for
ADAM as well.

The theory contains many simpler typed lambda calculi as subsystems, and most of
our constructions are valid in some of these too.

While being formal, ADAM attempts to come much closer to the natural way of
expression of informal mathematical language than most other systems based on Type
Theory. We achieve this by making a sharp distinction between the abstract expressions
that are manipulated by the formal system (sometimes called the “deep structure” or
“kernel language”), and the concrete text as it is written down by the mathematician.

In type theory, propositions and proof objects are represented as a kind of types and
objects. We have not developed a really natural notation for proof construction, so we
describe proofs mainly in ordinary English, sometimes using an equational style.

2.1 Language definition mechanism

Mathematical languages are often defined by first defining a kernel language and subse-
quently adding “syntactic sugar”. We choose for a more sophisticated correspondence
between the concrete language and its basic type theory, for the following reasons.

2.1. LANGUAGE DEFINITION MECHANISM 19

1. There are new syntactic classes, like ‘declarations’, that do not correspond to
expressions in the primitive type theory.

2. Context information for an expression contains more information about the syn-
tactic forms that are allowed for that expression than contexts in the primitive
type theory.

3. We wish to have the possibility to introduce new sublanguages within ADAM that
may have a structure very different from type theory.

We seek to define the language by a form of two-level grammar in the style of Van
Wijngaarden [86], but using abstract trees as parameters rather than strings. The gram-
mar formalism is informally described in this section. The description of ADAM in the
following sections uses this grammar formalism, but some of the more complicated fea-
tures will be described merely by example.

2.1.1 Two-level grammar. The first level consists of a number of abstract syntax
classes A, which are defined by context-free production rules. Members of these classes
are abstract trees, rather than strings as in Van Wijngaarden grammar [86].

The second level consists of a number of parametrized concrete syntax classes T(x̄),
where x̄ is a sequence of parameters or meta-variables xi, each ranging over an abstract
syntax class Ai. Names of syntax classes of both levels are in Slanted font and begin with
a capital. The concrete classes are defined by production rules which may contain meta-
variables. Members of a concrete class (with actual parameters) are pieces of concrete
text. The parameters serve to pass information from the context into the derivation of
a piece of concrete text and vice versa.

Thus, our notion of two-level grammar is roughly the same as the notion of Definite
Clause Grammar (or unification grammar) [2, page 79–80] used in the logic programming
community. It has also some similarity with the notion of attribute grammar, except that
we expect parsing to be done simultaneously with parameter instantiation, and do not
allow a parse tree to be recomputed with different parameter values. There is no need
even to mention parse trees. See Ma luszyński [53] for a comparison between Definite
Clause Grammars and attribute grammars.

The distinction between the two levels is not really necessary: a first level class A can
be seen as a second-level class A(x) on type-free trees, and its context-free production
rules as abbreviations for second-level production rules.

2.1.2 Derived notions. We introduce some (syntactic) predicates p(x̄) over ab-
stract classes. These are inductively defined by Horn clause logic with equality. Clauses
are written using ‘⇐’ as main operator. Each such predicate may be identified with a
syntax class that contains the empty string ε just when the predicate holds. To effect
this, replace each Horn clause p(x̄)⇐ q̄(x̄) by a production rule p(x̄) −→ q̄(x̄), and any
production rule containing a condition p(x̄) will be blocked when p(x̄) is not rewritable
into ε.

We also introduce some (syntactic) operations f (x̄) on abstract classes. Such an
operation may be replaced by a predicate f ′(x̄, y) that holds just when f (x̄) equals y.

20 CHAPTER 2. THE LANGUAGE ADAM

The parameters of a class can often be separated into input (or inherited) and output
(or synthesized) parameters. The actual value of an input parameter is assumed to be
fixed by the production rules that invoke the syntax class. The actual value of an output
parameter is to be determined by the production rules for the class itself.

We use a generic abstract class, A∗, for any class A. This class contains all finite
(possibly empty) sequences of members of A.

2.1.3 Grammar notation. Syntactic predicate and operation names are in lower
case.

The production rules for abstract classes are given in Backus-Naur Form, using meta-
symbols ‘::=’, ‘|’, and ‘.’, and braces ‘{’, ‘}’ for grouping. In particular, ‘{}’ stands for
an empty production. All other symbols are terminal symbols.

The production rules for concrete classes are written using ‘−→’ as main operator,
a comma for string concatenation, terminal symbols between double quotes, and using
italic or greek symbols as variables.

Rules for predicates are written using⇐ as main operator. Note that string concate-
nation for classes becomes conjunction for predicates. For any abstract class, we assume
syntactic equality and inequality predicates, (a = a′) and (a 6= a′).

2.2 Basic grammar of ADAM

This section introduces the abstract and concrete classes that we will use. The next
section (2.3) gives production rules for general use. The other sections describe specific
language features; most of these are formalized by means of definitions to be collected in a
standard environment. Several features require additional syntax classes and production
rules; these are only informally described, either by means of example or by means of
definitions that treat only some special cases.

The main context-free classes are (abstract) terms and contexts, just as in B.1. The
rules in appendix B define a predicate ‘Γ ` t:T ’ for contexts Γ and terms t and T ,
meaning that under the assumptions in Γ, abstract term t has type T .

The main concrete syntax class is TermΓ,γ(t, T), where context Γ records all assump-
tions v:A currently made, γ is an environment recording all name bindings and other
definitions. Now, if T represents a type (i.e. Γ ` T : Typei, where i is called the level
of T), then a concrete text produced by TermΓ,γ(t, T) denotes the abstract term t, and
the production rules shall be such that Γ ` t:T holds. (We conceive that this might be
checked by an appropriate grammar manipulation tool.)

2.2.1 Abstract classes. We have the following abstract classes, listed together with
the meta-variables that range over them.

α A∗ : For any syntax class A: finite sequences of expressions of
class A

v Var : Abstract variables
c,Q Const : Abstract primitive constants

2.2. BASIC GRAMMAR OF ADAM 21

i Nat : Natural numbers at the syntactic level, e.g. to index the
hierarchy of universes

t, a, b Term : Terms, which denote objects, including types
T,A,B Type : Types, being just terms
Γ,∆ Context : Contexts, being sequences of assumptions like v:T
x Name : Names (identifiers) used in concrete text
γ, δ Env : Environments, being sequences of environment items

EnvItem: Environment items, being either name bindings or coercions
(This may be extended.)

φ Subst : Substitutions for abstract variables

We distinguish between variables used in abstract terms and names written in concrete
text for the following reasons:

• Concrete names may be ambiguous; abstract variables must be unambiguous.

• The concrete name x used in a concrete abstraction, (x :: b), may be different from
the name y used in the type of the abstraction, Π(y:A :: By).

• When using pattern matching, for example ((x, y) :: b), multiple concrete names
refer to components of the value of the same unnamed abstract variable.

An environment γ contains, for any visible name x, an item x:T := t that gives the
type and (abstract) value of x. This value may be either the abstract variable named
by x, or the value of x as given by some definition. The environment may furthermore
specify other information that influences the parsing of concrete terms, such as coercions
(described in 2.3.5), and infix operator symbols (not formally described here).

For Var and Const, see 2.2.3. The other classes are given by:

Nat ::= 0 | Nat ′ .

A∗ ::= {} | A A∗ .

Term ::= Var

| Const({Term, }∗)
| (Var :: Term) .

Type ::= Term .

Context ::= {Var: Type; }∗ .
EnvItem ::= Name: Type := Term

| Const(Context): Type := Term

| Context ` Term : Type ⊆t Type .

Env ::= {EnvItem; }∗ .
Subst ::= {Var := Term, }∗ .

(EnvItem may be extended with other kinds of environment information.)

22 CHAPTER 2. THE LANGUAGE ADAM

2.2.2 Concrete classes. We did already introduce the class TermΓ,γ(t, T) of terms
of inherited type T . Besides we have a class TTermΓ,γ(t, T) of terms of synthesized type
T . Thus, expressions of this class define both the abstract term t and its type T , and
we will have both Γ ` T : Typei for some i, and Γ ` t:T .

TermΓ,γ(t, T) : A term t of inherited type T
TTermΓ,γ(t, T): A term t of synthesized type T , guaranteed to be cor-

rect (if Γ, γ are correct)
Def Γ,γ(δ) : A definition yielding the new environment δ
DefsΓ,γ(δ) : A (nonempty) sequence of definitions
DeclΓ,γ(∆, δ, i): A declaration yielding the new assumptions ∆ and

environment δ, containing only types up to level i
PatΓ,γ(T, t, δ) : An exhaustive pattern for type T that, when matched

against term t, yields name bindings δ

Predicates are the following:

(a = a′) : a is structurally equal to a′

(v 6= v′) : variable v is different from v′

(t => t′) : term t reduces to head normal form t′

(t == t′) : term t is convertible to t′

Γ ` t:T : in context Γ, t is a term of type T
in(a, α) : a occurs in list α
fresh(v,Γ) : Abstract variable v is fresh with respect to Γ
valuΓ(φ,∆) : φ is a valid valuation for ∆ in context Γ

Predicates =>, ==, and ` are given in appendix B. Predicates in, fresh, and valu are
given by:

in(a, a$α) .

in(a, b$α) ⇐ in(a, α) .
fresh(v, {}) .

fresh(v, {v′:T ; Γ}) ⇐ (v′ 6= v), fresh(v,Γ) .
valuΓ({}, {}) .

valuΓ({φ, x := t}, {∆; x:T} ⇐ valuΓ(φ,∆), Γ ` t[φ]:T [φ] .

Syntactic operations:

αα′ : List concatenation
t[φ] : Term t under substitution φ
repq(Q,∆, t) : Repeatedly apply quantifier Q for all typings in ∆ to

term t

List concatenation and term substitution are defined as usual, taking care for variable
renaming. Substitution of a single variable is needed for term reduction in appendix B;
substitution of multiple variables is currently only used in our description of coercion,
subsection 2.3.5. Repeated quantifier application is defined in 2.5.5.

2.3. PRODUCTION RULES 23

2.2.3 Identifiers. We consider availability of several styles of identifiers indispens-
able for writing serious mathematical texts (and hope that automatic proof checkers will
soon provide them).

We use single-character names in italic, greek, or calligraphic font, and multiple-
character names in sans-serif and boldface font. So the expression ‘fax’ is the juxtapo-
sition of three variables, while ‘fax’ is a single constant. In patterns, the underscore ‘ ’
will act as an anonymous variable.

Adding a prime ‘′’ builds a new name. Other decorations such as subscripts usually
denote some operation applied to the undecorated symbol, but may also be used to build
new identifiers if this is explicitly stated.

Furthermore, we sometimes use other mathematical symbols, sometimes written in
infix (or postfix, outfix, mixfix, . . .) position.

Capitalized identifiers are normally used for types, boldface identifiers for types of
types, sets of sets, categories etc. When introducing new notation, characters from the
end of the alphabet usually stand for arbitrary identifiers, while other symbols stand for
expressions.

2.3 Production rules

2.3.1 Terms

As said, we distinguish between terms with inherited and with synthesized type. A
typical example of a term with synthesized type is a variable occurence. A term with
synthesized type may be used where an inherited type is already given, provided both
types are convertible. Terms of both classes may be surrounded by parentheses, and
may make use of local definitions.

TTermΓ,γ(t, T) −→ Name x, in({x:T := t}, γ).
TermΓ,γ(t, T) −→ TTermΓ,γ(t, T ′), (T == T ′).

TTermΓ,γ(t, T) −→ “(”,TTermΓ,γ(t, T), “)”.
TermΓ,γ(t, T) −→ “(”,TermΓ,γ(t, T), “)”.

TTermΓ,γ(t, T) −→ “let ”,DefsΓ,γ(δ), “ in ”,TTermΓ,γδ(t, T).
TermΓ,γ(t, T) −→ “let ”,DefsΓ,γ(δ), “ in ”,TermΓ,γδ(t, T).

TermΓ,γ((v :: b),Π(A;B)) −→ fresh(v,Γ), “(”,PatΓ,γ(A, v, δ),
“::”,Term{Γ;v:A},γδ(b, B(v)), “)”.

TTermΓ,γ((fa), (Ba)) −→ TTermΓ,γ(f,Π(A;B)),TermΓ,γ(a,A).

As one sees, the context and environment parameters Γ, γ are always passed on to
subexpressions. Production rules would be quite easier to read if we could omit them
from our rule notation. For now, we will accept the load.

2.3.2 Patterns

The class PatΓ,γ(T, t, δ) produces exhaustive patterns for type T that, when matched
against term t, yield name bindings δ. The simplest form of patterns are single named

24 CHAPTER 2. THE LANGUAGE ADAM

variables, resulting in a single binding, and the anonymous variable ‘ ’, resulting in no
binding at all.

For composite patterns, we give only a rule for patterns that match dependent pairs
(section 2.6). See subsection 2.12.6 for a more general idea of patterns.

PatΓ,γ(T, t, {x:T := t , }) −→ Name x.

PatΓ,γ(T, t, {}) −→ “ ”.
PatΓ,γ(Σ(A;B), t, αβ) −→ “(”,PatΓ,γ(A, fst t, α),

“;”,PatΓ,γ(B(snd t), snd t, β), “)”.

2.3.3 Definitions

A definition introduces some typed identifiers, and assigns a value to them. We have
several forms of definition; not all of these formally described. The class Def Γ,γ(δ)
produces a single definition, the class DefsΓ,γ(δ) a sequence of them.

A (concrete) simple definition may have the form ξ:T := t, where ξ is a pattern and
T and t are expressions denoting a type and a term of that type. A simplified form of
definition is ξ := t, which is possible only if t has a synthesized type T . As the rules
indicate, a definition yields the bindings obtained by handing the value of the term t
over to the pattern ξ.

Def Γ,γ(δ) −→ PatΓ,γ(T, t, δ), “:”,
TermΓ,γ(T,Typei), “:=”,TermΓ,γ(t, T).

Def Γ,γ(δ) −→ PatΓ,γ(T, t, δ), “:=”,TTermΓ,γ(t, T).
DefsΓ,γ(δ) −→ Def Γ,γ(δ).

DefsΓ,γ(δδ′) −→ Def Γ,γ(δ), “; ”,DefsΓ,γδ(δ′).

Secondly we have parametrized definitions in various forms, which we do not formally
define. Some of these are:

1. Primarily, a parametrized definition consists of some new constant c followed by a
type declaration ∆ of its parameters, its result type T and defining expression t :

c(∆):T := t

2. Instead of declaring the parameters after the constant, they may be declared in
front of the definition, separated by the symbol ‘`’ in which case only the sequence
of variable names x̄ declared in ∆ appear after the constant:

∆x̄ ` c(x̄):T := t

(Do not confuse this use of ‘`’ inside the language with the syntactic (meta-)
predicate ` !)

3. Parameters can be made implicit by omitting them from the sequence x̄. This is
often done for type parameters, e.g.

A,B: Type; (x, y):A×B ` swap(x, y):B ×A := (y, x)

2.3. PRODUCTION RULES 25

4. A parameter typing itself can be made implicit by preceding the definition with a
separate variable declaration ‘Variables x:T ; . . .’, like:

Variables x: IR+; n: IN+;
n
√
x := x1/n;√
x := 2

√
x

Thus, whenever a variable, that is a declared in a Variables declaration, appears
untyped in a subsequent definition, it is implicitly typed by the declaration. We
have as yet no clear scope rules for variable declarations.

Later on we will allow several other forms of definitions, e.g.:

• Coercions (. . . ⊆t . . .) in 2.3.5

• Several forms of definition by giving a characteristic property (Define . . . by . . .)
in 2.6.3 and 2.8.5

• Sum types given in BNF form (S ::= . . . | . . .) in 2.8.4

We have yet no formal scheme to define (or declare) new constructs that bind local
variables. But we will use a pseudo definition that is suggestive of the intended notation,
like:

(x:A ` bx:B) ` (x 7→ bx) := . . .

2.3.4 Declarations

A declaration in DeclΓ,γ(∆, δ, i) is a sequence that may contain typings like ξ:T , where
ξ is a pattern, as well as definitions as above. A special form of typing consists of only a
type T , and represents an anonymous assumption :T . This is intended to be used only
when T is a proposition.

For each typing ξ:T , the synthesized parameter ∆ contains an abstract assumption
x:T , and δ contains the name bindings that are yielded by matching pattern ξ against
x.

DeclΓ,γ({}, {}, i) −→ .

DeclΓ,γ({v:T ; ∆}, δδ′, i) −→ fresh(v,Γ),PatΓ,γ(T, v, δ), “:”,TermΓ,γ(T,Typei),
“; ”,Decl{Γ; v:T},γδ(∆, δ′, i).

DeclΓ,γ({v:T ; ∆}, δ′, i) −→ fresh(v,Γ),TermΓ,γ(T,Typei),
“; ”,Decl{Γ; v:T},γ(∆, δ′, i).

DeclΓ,γ(∆, δδ′, i) −→ Def Γ,γ(δ), “; ”,DeclΓ,γδ(∆, δ′, i).

2.3.5 Coercion

We sometimes wish to allow objects of one type to be “coerced” into objects of another
type, by implicitly applying some conversion function. These coercions may be user-
defined, and are recorded in the environment by an item of the form ∆ ` f : T ⊆t

26 CHAPTER 2. THE LANGUAGE ADAM

T ′. Here, f is the coercion function from type T to T ′, and ∆ declares substitution
parameters for f , T , and T ′. The rules below describe how coercions are defined and
implicitly applied; functions are described in 2.5.3.

Def Γ,γ({∆ ` f : T ⊆t T
′ , }) −→ DeclΓ,γ(∆, δ), “`”, (Γ′ = Γ∆), (γ′ = γδ),

TermΓ′,γ′(f, (T → T ′)), “:”,
TermΓ′,γ′(T,Typei), “⊆t”,TermΓ′,γ′(T ′,Typei).

TermΓ,γ(f [φ].t, U) −→ in({∆ ` f : T ⊆t T
′}, γ),

valuΓ(φ,∆), (U == T ′[φ]),TermΓ,γ(t, T [φ]).

Note that there are as yet no restrictions on the coercion function, so that one can define
very misleading coercions. It would be desirable to require, but difficult to enforce, that if
the transitive closure of the set of all coercions in effect contains any circularity f :T ⊆t T ,
then the coercion function f should be the identity.

This formalization of ⊆t is not wholly adequate to cover the use we make of it. For
example, many type constructors preserve coercion, like the following. If

ϕ : A′ ⊆t A ;
ψ(x:A′) : Bx ⊆t B

′x

then we would like to have a coercion Π(ϕ;ψ) : Π(A;B) ⊆t Π(A′;B′), where Π(ϕ;ψ) is
the appropriate function (p 7→ (x :: ψx.p(ϕ.x))).

We will speak a bit loosely about coercions, like stating T ⊆t T
′ without giving the

coercion function. We write T =t T
′ if we have a bijective pair of coercions T ⊆t T

′ and
T ′ ⊆t T .

2.4 Types and universes

Types in context Γ are those terms T for which Γ ` T : Typei is derivable, for some
Nat i. This i is called the level of T . The constants Typei are called universes. These
are types themselves and form a cumulative hierarchy, for we have:

Typei: Typei+1 ,

Typei ⊆t Typei+1 .

The latter rule means that any type in Typei is in Typei+1 too; see paragraph 2.3.5
for ⊆t.

These universes are called predicative, because the rules for introducing types in
Typei do not assume that Typei itself is completely given. There is also an impredica-
tive universe of propositions Prop, which we introduce in section 2.11, that is itself an
element of Type0, and all propositions P : Prop are types in Type0 as well.

Many definitions can be given at any level, and the subscript i is often left implicit.
Definitions that involve a universe, like Fam in 2.7, do actually define a hierarchy of
type-constructors

T : Typei ` Fami T : Typei+1 .

2.5. PRODUCTS AND FUNCTION SPACES 27

2.5 Products and function spaces

The first paragraph of this and following sections describes a constant that is a primitive
type constructor, constants for introducing and eliminating objects of such types, and
some derived notation. In most cases, the types of these constants can be given in the
standard declaration, but in some cases (including this section) special derivation rules
will be needed.

The next paragraphs introduce notions that are derived from the primitive type
constructor.

2.5.1 Products. Informally, if A is a type, and for any x:A is Bx a type, then the
(generalized) product Π(x:A :: Bx) is a type containing all (infinitary) tuples (x :: bx),
where bx:Bx for any x:A. This is a derived notation for Π(A; (x :: Bx)).

Selecting a component from a tuple is denoted by juxtaposition, so a tuple can act as
a prefix operator. Alternative notations are subscripting and reverse application, using
an infix ‘\’ which we took from DEVA [85].

A: Type; B: Π(A; (x :: Type)) ` Π(A;B): Type ;
p: Π(A;B); a:A ` pa:Ba ;

pa := pa ,

a\p := pa

(x:A ` bx:Bx) ` (x :: bx): Π(A;B)
(x:A :: Bx) := (A; (x :: Bx))

p, p′: Π(A;B) ` p =Π(A;B) p
′ ⇔ ∀x:A :: px =Bx p

′x

The last line, which uses the equality predicate of section 2.10, is the extensionality rule
stating that tuples are equal (but not necessarily convertible) just when their components
are equal.

Finite products, like B0×B1, are defined as a generalized product over a finite type
in paragraph 2.8.2.

2.5.2 Exponential types. Given types A and B, we write BA for the type Π(:A ::
B) of (possibly infinitary) tuples.

A,B: Type ` BA := Π(:A :: B)

Single objects are identified with one-tuples via the obvious coercions: B =t B
1.

2.5.3 Function spaces. The type A → B of (total) functions from A to B is iso-
morphic to the type BA of tuples, but we prefer to make the conceptual distinguish
between these two types explicit. This allows us to define different coercions and other
notations, like:

• Composition of tuples of functions, say f, g: (A → A)N , will be defined compo-
nentwise, (f ◦̄ g)i = fi ◦̄ gi (as arrows in the category TYPEN), which would be
difficult if the typing were f, g:N → (A→ A).

28 CHAPTER 2. THE LANGUAGE ADAM

• Single objects are identified with one-tuples: B =t B
1.

• Functions will occasionally be regarded as (single-valued) binary relations between
A and B, by defining a coercion (A → B) ⊆t P(A × B). In particular, we have
(A→ A) ⊆t P(A2). We would not do this for tuples.

We define function space A→ B by means of a Backus-Naur notation, that is described
in paragraph 2.8.4, as the type containing an object λp for any tuple p:BA. Thus,
function space is like an Abstract Data Type, that is implemented by the tuple type.

The normal notation for function abstraction will be ‘x 7→ bx’ where variable x is
locally bound. Function application is denoted by an infix low dot, and defined by a
case analysis (paragraph 2.8.5) on the only case for f :A→ B.

A,B: Type ` A→ B ::= λ(p:BA) .
(x:A ` bx:B) ` x 7→ bx := λ(x :: bx) : A→ B

f :A→ B; a:A ` Define f.a:B by

(λp).a := pa

Note that the definition of ‘7→’ is a pseudo definition because new forms of variable
binding cannot be formally defined from within ADAM .

The coercion to binary relations is given by

A,B: Type ` f 7→ {x:A :: (x, f.x) } : (A→ B) ⊆t P(A×B) .

Identity functions, constant functions, backward and forward composition of functions
are defined by:

I:A→ A := x 7→ x

K(c:C):A→ C := x 7→ c

f :A→ B; g:B → C ` g ◦ f :A→ C := x 7→ g.(f.x) ;
f ◦̄ g:A→ C := g ◦ f

(Forward composition ‘f ◦̄ g’ is Hoare’s composition operator ‘f ; g’.)
Tuples and functions are combined in the following definitions:

πa:A: Π(A;B)→ Ba := p 7→ pa

fx:A:C → Bx ` 〈f〉:C → Π(A;B) := z 7→ (x :: fx.z)

2.5.4 Infix operators. We may introduce infix operators ⊗, which form a new
syntactic class, so that

x:A; y:B ` x⊗ y:C

for some types A, B and C. Note that infix abstractors like 7→ do not follow this pattern.
For such an operator ⊗ we introduce the following notations. The first two show how to

2.6. SUMS AND DECLARATION TYPES 29

turn an infix operator into either a prefix operator or a function on binary tuples. The
other two notations are called sections1.

(⊗): (A×B . C) := ((x, y) :: x⊗ y)
(⊗):A×B → C := λ(⊗)

x:A ` (x⊗): (B . C) := (y :: x⊗ y)
y:B ` (⊗y): (A . C) := (x :: x⊗ y)

2.5.5 Repeated abstraction. To introduce a sequence of assumptions and defini-
tions using a single declaration, we introduce a triangle ‘.’ as an infix notation. Infor-
mally, if ∆ is a (concrete) declaration, and T a type in which the identifiers introduced
by ∆ may occur, then (∆ . T) stands for taking the product of T over all assumptions
in ∆. For example, (x:A; y:B . C) = Π(x:A :: Π(y:B :: C)). The formal rule is:

TermΓ,γ(repq(Π,∆, T),Typei −→ “(”,DeclΓ,γ(∆, δ, i), “.”,
TermΓ∆,γδ(T,Typei), “)”.

The syntactic operation repq (repeated quantifier application) is given by the syntactic
equations

repq(Q, {}, t) = t

repq(Q, {v:A; ∆}, t) = Q(A; (v :: repq(Q,∆, t)))

When the declaration consists only of a type, we have (A . B) = BA.

2.6 Sums and declaration types

2.6.1 Sum types. If A is a type and, for any x:A, Bx is a type, then the (general-
ized) sum Σ(A;B) or Σ(x:A :: Bx) is a type consisting of all pairs (a; b) where a:A and
b:Ba. We introduce the typing rules, and define some auxiliary operations.

A: Type; B: TypeA ` Σ(A;B): Type

a:A; b:Ba ` (a; b): Σ(A;B)
T : TypeΣ(A;B); t: (x:A; y:B . T (x; y)) ` Σ elim t: Π(Σ(A;B);T)

(x:A; y:Bx ` txy:T (x; y)) ` ((x; y) :: txy) := Σ elim(x; y :: txy)
fst: (z: Σ(A;B) . A) := ((x; y) :: x)

snd: (z: Σ(A;B) . B(fst z)) := ((x; y) :: y)
σa:A:Ba→ Σ(A;B) := y 7→ (a; y)

fx:A:Bx→ C ` [f]: Σ(A;B)→ C := (x; y) 7→ fx.y

Note that we have λfst: Σ(A;B)→ A. For finite sums, like B0 +B1, see paragraph 2.8.2.
1after an idea of Richard Bird

30 CHAPTER 2. THE LANGUAGE ADAM

Taking sums preserves coercion, for if

ϕ : A ⊆t A
′ ;

ψ(x:A) : Bx ⊆t B
′x

then we have a coercion Σ(ϕ;ψ) : Σ(A;B) ⊆t Σ(A′;B′), where:

Σ(ϕ;ψ) := (x; y) 7→ (ϕ.x;ψx.y) .

2.6.2 Declaration types. From a declaration ∆ we can obtain the type of its in-
stances by means of Σ. An instance of a declaration is a sequence of (correctly typed)
values for the typed identifiers in the list. For example, declaration

(x:A; y:Bx; z:Cxy)

has triples (a; b; c) as instances, where a:A, b:Ba and c:Cab. So the class of all instances
forms a type, denoted by writing parentheses and braces around the declaration, thus:
{ (∆) }. In this case:

{ (x:A; y:Bx; z:Cxy) } = Σ(x:A :: Σ(y:Bx :: Cxy))

The following grammar rule describes how a declaration type is to be translated into
repeated use of quantifier Σ:

TermΓ,γ(repq(Σ,∆, 1),Typei) −→ “{ (”,DeclΓ,γ(∆, δ, i), “) }”.

A more elaborate notation for the instances (a; b; c) of a declaration is to write them
like definitions, (x := 1; y := b; z := c). This is very much like Pebble [16] or DEVA [85].
Unfortunately, we cannot formalize this, because our abstract encoding of declaration
types (via Σ) disregards the concrete identifier names.

2.6.3 Structure definitions. Elimination on a sum type can be done by pattern
matching, as in the definition of fst and snd above. But definitions of classes of struc-
tures in mathematics are often given in combination with special elimination constructs.
Consider for example the common definition of posets:

A poset X is a structure (X;≤X) where X is a set and ≤X a partial order
on X.

This definition indicates (1) that there is a type of posets, (2) that for any set X and
partial order ≤ on X, (X;≤) is a poset, and (3) that the underlying set of a poset X is
noted as X as well, and that its corresponding partial order is noted as ≤X .

We write such a combined structure definition as follows. (Posets appear again in
section 9.1.)

Define Poset: Type1 by

X: Poset :=: (X: Set; (≤X): POX) .

For another example, see the definition of ‘Fam’ below.

2.7. FAMILIES AND QUANTIFIERS 31

2.7 Families and quantifiers

For T a type, we define a family of T to be a tuple (D; t) where D is a type, called the
domain of the family, and t associates any d:D with an element td of T . Formally:

Define Fami(T : Typei+1): Typei+1 by

t: Fami T :=: (Dom t: Typei; t:T
Dom t)

The arguments of Π or Σ now turn out to be families of types. I.e., we may write:

Π,Σ: (Fami Typei . Typei)

Such constants Q, which are typed by Q: (Fami T . T) for some type T and Nat i, are
called quantifiers.

In 2.5.1, we introduced a double-colon notation (x:A :: Bx) for families. We shall
now generalize this to allow an arbitrary declaration ∆ instead of the single typing x:A.
Informally, a quantification

Q(∆ :: t)

shall stand for the repeated quantifier application repq(Q,∆, t). For example, we can
write, using the universal quantifier for propositions, and finite and infinite types:

∀(n: IN; k := nn; p: INk; i: k :: P (n, p, i))

The formal rule looks like

TTermΓ,γ(repq(Q,∆, t), T) −→ TTermΓ,γ(Q,T Fami T),
“(”,DeclΓ,γ(∆, δ, i), “::”,TermΓ∆,γδ(t, T), “)”.

except that Q must be a single identifier, and that the concrete type expression T Fami T

should be replaced by the abstract tree expression that it denotes.
The notation (∆ :: t) may be used too for families that are not argument of a

quantifier Q, using the pseudo-definition

(∆x̄ :: tx̄) := ({ (∆x̄) }; (x̄ :: tx̄)) : FamT

A derived notation for finite families is given in paragraph 2.8.2.

2.8 Finite types

2.8.1 Naturals as types. For Nat n, a finite type with n elements is noted just ‘n’
(in decimal notation), and its elements are named 0 till n − 1. And if T is an n-tuple
of types, T : Typen, so Π(n;T) is the finite product of all Ti, then we note elements of
this product as ‘(t0, . . . , tn−1)′, where ti:Ti, and the parentheses are optional.

` n: Type for Nat n

` k:n for Nat k, k < n

T : Typen; t0:T (0); . . . ; tn−1:T (n− 1) ` (t0, . . . , tn−1): Π(n;T)

32 CHAPTER 2. THE LANGUAGE ADAM

2.8.2 Finite families, products, and sums. We note a family whose domain is
a finite type n by using (overloaded) angle brackets. This gives an elegant notation for
finite products and sums as special cases of generalized products and sums:

〈t0, . . . , tn−1〉 := (n; (t0, . . . , tn−1))
B0 × · · · ×Bn−1 := Π〈B0, . . . , Bn−1〉
B0 + · · ·+Bn−1 := Σ〈B0, . . . , Bn−1〉

This ‘overloaded’ use of ‘〈. . .〉’ bears no relationship to the notation ‘〈f〉’ in para-
graph 2.5.3. The latter notation says that if fi:A → Bi (i = 0, 1) then 〈f0, f1〉:A →
B0 ×B1. We have furthermore πi:B0 ×B1 → Bi and σi:Bi → B0 +B1.

We find our definition B0×B1 := Π〈B0, B1〉 far more elegant than the more common
one in type theory, B0 ×′ B1 := Σ(x:B0 :: B1). Ours has the advantage that notations
and operations on generalized products apply directly to finite products, so that, e.g.,
B2 is synonymous with B ×B.

2.8.3 Enumerations. For any enumerated list of distinct labels `i, we introduce a
finite type {`0, . . . , `n−1} whose elements are `i. Let L abbreviate this type, then L is
isomorphic with type n. We define a finite type of booleans as an example.

` `i:L: Type

T : TypeL; t0:T (`0); . . . ; tn−1:T (`n−1) ` (`0 :: t0 | · · · | `n−1 :: tn−1): Π(L;T)
Bool := {true, false}

if b then p else q := b\(true :: p | false :: q)

(We generally use the symbol ‘|’ to join alternatives. Its shape gives a good separation.)

2.8.4 Labeled sums. Sum types whose domain is an enumeration may be defined
by grammar rules in Backus-Naur form (BNF), using ‘::=’, which is not to be confused
with the BNF definitions used to define the abstract classes of ADAM . So the following
two definitions are equivalent, where L is {`0, . . . , `n−1} and the ∆i are declarations:

S ::= `0(∆0) | · · · | `n−1(∆n−1)
S := Σ(L; (`0 :: { (∆0) } | · · · | `n−1 :: { (∆n−1) }))

The elements (`i; δ) of S, where δ: { (∆i) }, may be noted `i(δ), and we can use a case
analysis notation like

(`0(x0) :: t0x0 | · · · | `n−1(xn−1) :: tn−1xn−1): Π(S;T)

2.8.5 Case analysis in definitions. The notation for finite tuples in 2.8.1 and 2.8.3
is a form of case analysis. We allow a more general form of mapping that uses arbitrary
(exhaustive and exclusive) patterns, as yet informally. Definitions may use case analysis
using a notation like

Define c(z:A+B):Cz by c(0;x) := cx | c(1; y) := c′y .

This corresponds to c: (z:A+B . Cz) := Σ elim((x :: cx), (y :: c′y)).

2.9. INFINITE TYPES 33

2.9 Infinite types

Infinite types are to be characterized by induction principles, and these form the subject
matter of this thesis. To prove the existence of inductive types, we need to assume the
existence of one infinite type:

2.9.1 Naturals. The syntax class Nat of naturals is not itself a type. We assume a
type named IN, with a dependent recursion rule as is usual in type theory. Its elements
may be given in decimal notation, so for Nat n we have n: IN. Conversely, we identify any
n: IN with a finite type, so IN ⊆t Type, where we skip details. We use ω as a synonym
for IN, especially to index infinite tuples. So Aω := (IN . A).

` IN: Type (2.1)
` 0: IN; s: (IN . IN) (2.2)

T : TypeIN; b:T (0); t(n: IN; h:Tn):T (sn) ` IN rec(b, t): Π(IN;T) (2.3)
` IN ⊆t Type (2.4)

ω := IN (2.5)

2.9.2 Finite sequences. Now we can form, for any type A, the type A∗ = Σ(n: IN ::
An) of finite sequences of A. The length of a sequence s is noted #s . Our definition is
similar to the one for families in 2.7:

A: Type ` Define A∗: Type by s:A∗ :=: (#s: IN; s:A#s)

The angle-bracket notation for finite families of paragraph 2.8.2 can be used for finite
sequences in A∗ as well, i.e. 〈t0, . . . , tn−1〉:A∗, and we have A∗ ⊆t FamA.

2.10 Equality predicate

We use a primitive equality predicate on objects of any type. It yields for any type A
and objects u, v:A, a type (u =A v) that is inhabited just when u equals v. This type is
actually a proposition in Prop, which we introduce in section 2.11. The inhabitant for
trivial equalities, including reflexivity, is denoted by ‘eq′.

A: Type; u, v:A ` (u =A v): Prop

a:A ` eq: (a =A a)
p: (A =Type B) ` A =t B

This last rule implies that, if in some context there is an expression p: (A =Type B),
and a:A, then one has a:B as well. This is called type conversion. Existence of such
an expression p is not effectively decidable, so a correctness checker may have to reject
expressions a:B when it is not evident how to find p.

The equality predicate (or equality type) might also be defined by the Leibniz equal-
ity, setting (u =T v) equal to

∀(P : PropT :: Pu⇒ Pv) ,

34 CHAPTER 2. THE LANGUAGE ADAM

Replacing ‘⇒’ by ‘⇔’ would be equivalent. One still needs a rule for type conversion,
and one for extensionality of (infinite) tuples.

2.10.1 Uniqueness. For any type A, we define !A to be the type containing the
unique element of A, if one exists; otherwise !A will be empty:

Define !(A: Type) by

a: !A :=: (a:A; uniq a: (x:A . a = x)) .

That is to say, any element a of !A consists of an element of A that is noted a as well,
together with a proof, noted uniq a, that any x:A equals a. We have !A ⊆t A.

2.11 The type of propositions

ITT fully identifies prositions with types, while CC contains a special type Prop to rep-
resent propositions. This is not only useful for making a conceptual distinction between
types and propositions, but also necessary for constructing types that represent the class
of all subsets of some type, while staying in the same universe, by defining P(A): Typei

as PropA, for any A: Typei.
Thus, Prop must be a member of any universe of the hierarchy. It is construed

a priori as being a type of types whose members have at most one element, and are
members of any other universe. As the product of any number of propositions still
has at most one element, it is again a proposition, the universal quantification noted
‘∀(A;P)’. We introduce Prop here in ADAM .

` Prop: Typei

` Prop ⊆t Typei

P : Prop; p, q:P ` eq: p =P q

A: Typei; P : PropA ` ∀(A;P): Prop

p:∀(A;P); a:A ` pa:Pa
(x:A ` px:Px) ` (x :: px):∀(A;P)

From the universal quantifier we derive all other propositional operators and quanti-
fiers. The existential quantifier is defined here as an operator ‘∃A’, meaning “type A is
inhabited”. We give it a subscript w now, as it is soon to be replaced.

The product ∀(A;P) is usually written as ∀(x:A :: Px). This and other quantifiers
and connectives are defined below. Note that ∃w is defined as an operator that turns a
type into a proposition; existential quantification over a family of propositions is derived
from this.

P ⇒ Q := ∀ :P :: Q
P0 ∧ · · · ∧ Pn−1 := ∀〈P0, . . . , Pn−1〉

True := ∀〈 〉
P ⇔ Q := (P ⇒ Q) ∧ (Q⇒ P)

2.11. THE TYPE OF PROPOSITIONS 35

∃w(A: Type) := ∀(X: Prop; ∀(x:A :: X) :: X)
∃w(P : FamProp) := ∃w{ (x: DomP ; Px) }
P0 ∨ · · · ∨ Pn−1 := ∃w〈P0, . . . , Pn−1〉

False := ∃w〈 〉
¬P := P ⇒ False

P,Q: Prop ` eq: (P =Prop Q) = (P ⇔ Q)

In addition, one may need the axiom of choice. This axiom states that, given a
family of nonempty types, there exists a tuple picking an inhabitant of each type from
the family.

B: TypeA; p:∀(x:A :: ∃wBx) ` ac p:∃w Π(A;B)

An existential assumption p:∃wA may be called weak because it can only be used for
proving other propositions. As explained in appendix C, for some purposes we need a
stronger notion of existential quantification. On other occasions we want to do classical
reasoning. In a constructive calculus, these should not be combined in a single type, for
this strong quantifier destroys the constructivity of terms of all types as soon as proofs
of propositions need not be constructive. For this reason, we introduce two alterna-
tive versions of Prop, which we name Propc and Propi for classical and constructive
(though not really intuitionistic, for intuitionistic philosophy does not admit impredica-
tive quantification) propositions. Thus, we have two variants of ADAM . Combining
them in a single language might be desirable, but requires a more careful distinction
between classical and constructive propositional operators.

Except when stated otherwise, we use constructive logic and omit the subscript i.

2.11.1 Constructive propositions. As expressions should be equivalent to con-
structive object definitions, we should have an operator ι (iota) that, given a construc-
tive proof that some type has a unique element, denotes that element. Consequently,
the information contained in a proof becomes relevant for computing the object denoted
by an expression, and one should not introduce representations in the abstract (kernel)
language in which this proof information is removed.

Rather than adding primitive rules for iota, appendix C proposes to introduce a new
existential quantifier with a stronger elimination rule. The idea is that the proposition
∃T should be equivalent to the quotient type of T modulo the equivalence relation that
identifies everything. Thus ∃T contains at most one equivalence class.

The type Propi of constructive propositions has rules as stated above for Prop and
this new existential quantifier.

A: Type ` ∃A: Propi

` ∃ in:A→ ∃A
T : Type∃A;
t: Π(x:A :: T (∃ inx));
d:∀x, y:A :: tx = ty ` ∃ elim t: Π(∃A; T)

Here we let the types A and T and proof d be hidden in the concrete notation ∃ elim t
because we are not so much concerned with proof objects. (In the appendix, rule C.3,

36 CHAPTER 2. THE LANGUAGE ADAM

we chose to show d explicitly.) Using ∃ elim we can define iota, as follows:

ιT : (∃!T . T) := ∃ elim((u; p): !T :: u)
noting (u; p), (v; q): !T ` pv: (u = v)

When Prop in the definition of ∃wA is read as Propi, then ∃wA and ∃A become
equivalent. I.e., one has

∃A ⇔ ∀(X: Propi; ∀(x:A :: X) :: X)

2.11.2 Classical propositions. For classical logic, one just adds a reductio ad ab-
surdum rule:

P : Propc ` raa: (¬¬P ⇒ P)

(Adding ∃ elim for Propc is possible but destroys the constructive nature of object
terms.)

2.12 More derived notions

2.12.1 Predicates

A predicate P on a type T is obviously an operator P : (T . Prop), and if ≺ is an infix
relation symbol, say

x:A; y:B ` x ≺ y: Prop ,

then we have (≺): (A×B . Prop). By “sectioning” (paragraph 2.5.4), (≺ b) stands for
the predicate (x :: x ≺ b).

In a declaration, we may write (x:≺ b) for (x:A; x ≺ b).

2.12.2 Subtypes

If A is a type and P a predicate over A, then {x:A |: Px} is a subtype of A which
is isomorphic to Σ(A;P), but for which we allow a more convenient notation for its
elements. Symbol ‘|:’ may be read as ‘such that’. We can pseudo define it by:

Define {x:A |: Px}: Type by

x: {x:A |: Px} :=: (x:A; propx:Px) .

One may use a pattern instead of the single variable x. So we have, if a: {x:A |: Px},
then a:A and prop a:Pa. Furthermore, if for some a:A there is an evident p:Pa, one may
write just a: {x:A |: Px}.

Here a problem appears: how should a subtype element a be noted when the corre-
sponding proof p is not evident? Writing ‘(a; p)’ is rather confusing. We have thought
about ‘(a|; p)’, where ‘|;’ should be read as “because of”, but leave it to informal notation,
for now.

Note that subtypes admit only the declaration of variables of that type. To quantify
over all subsets of a type one must use the subset type PT below, which is derived from
Prop. A membership test for subtypes does not make much sense, because a ∈ {x:A |:
Px} can always be replaced by Pa.

2.12. MORE DERIVED NOTIONS 37

2.12.3 Subsets

The type of subsets S:P(A) is isomorphic to the type of predicates on A, but one writes
a ∈ S for the membership test rather than S(a). We shall write |P | for the subset that
corresponds to predicate P : PropA, by making the following definitions.

P(A: Typei): Typei ::= | (P : PropA) | .
S:PA; a:A ` Define a ∈ S : Prop by

a ∈ |P | := Pa

(x:A ` Px: Prop) ` {x |: Px}:PA := |x :: Px|
t: FamA ` {t}:PA := {x |: ∃d: Dom t :: x = td}
R,S:PA ` R ⊆ S := ∀(x:A :: x ∈ R⇒ x ∈ S)

This may be completed with all usual set operations, like the empty set ∅, binary op-
erators ∪ and ∩, quantifiers

⋃
and

⋂
(intersection within A), and S (complement in

A).
The third definition above introduces the usual suggestive notation for set compre-

hension, except that we write ‘|:’ for “such that”, just as with subtypes. The fourth
definition introduces a notation similar to the replacement axiom of set theory. For
example, {x:D :: tx } stands for the subset that contains tx for any x:D.

The next definition tells how to interpret subsets as types themselves, that is, we
have PT ⊆t Type. Furthermore, a type may stand for its full subset. Finally, we shall
sometimes omit the bars around a predicate P .

T : Type ` S 7→ {x:T |: x ∈ S} : PT ⊆t Type

T : Type ` T :PT := {x |: True}
T : Type ` P 7→ |P | : PropT ⊆t PT

The declaration X:⊆ T now stands for X:PT ; ∀(x:T :: x ∈ X ⇒ True), which we read
as just X:PT .

2.12.4 Relational notations

A (binary) relation between two types A and B, notation R:A ∼ B, should obviously be
a subset R:P(A×B). One easily defines converse, left and right domain, and (forward)
composition of relations:

A,B: Typei ` A ∼ B: Typei := P(A×B)
R:A ∼ B ` R∪:B ∼ A := { (y, x) |: (x, y) ∈ R} ,

R<:PA := {x |: ∃y :: (x, y) ∈ R} ,
R>:PB := { y |: ∃x :: (x, y) ∈ R}

R:A ∼ B, S:B ∼ C ` R · S:A ∼ C := { (x, z) |: ∃y:B :: (x, y) ∈ R ∧ (y, z) ∈ S}

This composition is associative and has identity relations |=A|.

38 CHAPTER 2. THE LANGUAGE ADAM

Functions f :A → B are sometimes identified with their relational graph, and we
define the relational image of a set:

f 7→ {x:A :: (x, f.x) } : (A→ B) ⊆t (A ∼ B)
R:A ∼ B; X:PA ` R[X] := { y:B |: ∃x:∈ X :: (x, y) ∈ R}

R:A ∼ B; x:A ` R[x] := R[{x}]

So one has, e.g., for X:PA, Y :PB; f :A → B, g:B → C, h:C → D; R:B ∼ C, the
following equalities:

f [X] = {x:∈ X :: f.x } : PB
f∪[Y] = {x |: f.x ∈ Y } : PA
f · g = f ◦̄ g : A ∼ C
f ·R = { (x, z) |: (f.x, z) ∈ R} : A ∼ C
R · h = {(y, z):∈ R :: (y, h.z) } : B ∼ D

In appendix D we will see how type constructors extend to relation constructors.
The most important of these we give here for general use. For R:A ∼ A′, S:B ∼ B′,
we define R → S to be the set of all pairs of functions that map related arguments to
related results:

R→ S: (A→ A′) ∼ (B → B′) := { (f, f ′) |: ∀(x, x′):∈ R :: (fx, f ′x′) ∈ S}

To obtain a function f :A → B given its graph R:A ∼ B with a proof that R is
single-valued,

p:∀x:A :: ∃!R[x] ,

one has to use the iota operator (subsection 2.11.1):

f.x := ιR[x](px) . (2.6)

2.12.5 Currying

We will sometimes consider (z: { (x:A; y:Bx) } . Tz) to be equivalent to

(x:A; y:Bx . T (x; y)) .

So tab is equivalent to t(a; b) and we can write ta for (y :: t(a; y)).
Taking A := 2, this convention amounts to (z:B +B′ . Tz) being equivalent to

(y:B . T (0; y))× (y:B′ . T (1; y)) .

Thus, if we have t:CB and t′:CB′
, we can write (t, t′):CB+B′

instead of ((x; y) :: (t, t′)xy).
(Currying is the term used in functional programming for using functions that yield

functions again, after an idea of H.B. Curry.)

2.13. CONCLUSION 39

2.12.6 Pattern matching

The notation of paragraph 2.8.3 for case analysis can be generalized to other patterns.
We will be less restrictive than in subsection 2.3.2, for we admit any ‘suitable’ terms
with some free variables to be used as a pattern.

Let meta-expressions ξū:A stand for patterns containing a sequence of variables ū.
Suppose we have a sequence of n patterns ξiu, where for simplicity we assume that each
pattern has only one and the same variable u:Ui. If one knows that

∀x:A :: ∃i:n; u:Ui :: x = ξiu (2.7)

and a sequence of expressions qiu typed by

u:Ui ` qiu:B(ξiu)

such that
∀i, j:n; u:Ui; v:Uj :: (ξiu = ξjv ⇒ qiu = qjv) (2.8)

then there is a unique tuple p: Π(A;B) such that p(ξiu) = qiu, which we note as

(ξ0u :: q0u | · · · | ξn−1u :: qn−1u) .

If the i and u in (2.7) are known to be unique, then (2.8) holds trivially.
A similar notation may be used for other infix abstractors, e.g.

(ξ0(u:Ui) . B0u | · · ·) := (x:A . x\(ξ0u :: B0u | · · ·))
(ξ0u 7→ q0u | · · ·) := (x 7→ x\(ξ0u :: q0u | · · ·))

A problem with these notations is that it might not be clear which identifiers are
being bound, in case ξi contains free variables itself.

2.12.7 Linear proof notation

Statements s R t that some transitive relation R, such as = or ⇔, holds between two
objects or propositions are often derived through a linear sequence of steps. We may
present these proofs in a three-column format:

s

R s′ { 〈reason why s R s′〉 }
R t { 〈reason why s′ R t〉 }

During such a linear proof, we may sometimes give a definition that extends to the
following proof lines, and even beyond.

Of course, any proposition P may be derived by a linear proof of P ⇐ True.

2.13 Conclusion

We defined an extensive notation system based on Constructive Type Theory, partly
using a two-level Van Wijngaarden grammar. Several of the more advanced features,
that we consider valuable to obtain natural notational flexibility, appeared to be too
complicated to be formally defined within the scope of this thesis. We shall apply the
notations in the rest of the thesis to express our definitions and rules.

40

Chapter 3

Common induction and recursion
principles

In this chapter, we present a summary of some common principles of inductive definition
and recursion. This serves two purposes: to get introduced to inductive definitions and
also to get acquainted with our notations.

In 3.1, we start with some simple examples, each one adding a new aspect of induc-
tive definition: naturals, lists, trees, join lists, rose trees, ordinal notations, inductive
relations, and infinite lists.

In 3.2, we formulate the main derived principles of induction and recursion on natu-
rals.

In 3.3, we summarize the theory of inductively defining a subset of a given set.
In 3.4, we derive some recursion principles from the induction rules in 3.3.

3.1 Examples of inductive types

Before embarking on generalized formulations of induction principles, we list some ex-
amples of inductively defined types that illustrate several features.

Example 3.1 (Natural numbers) The type IN is usually described by the five Peano
axioms (where we ignore the presence of IN in ADAM):

1. 0, zero, is a natural number: 0: IN.

2. Whenever n is a natural number, then sn, its successor, is also a natural number:

n: IN ` sn: IN

3. No successor equals zero: sn 6= 0.

4. Natural numbers with the same successor are equal: sn = sm⇒ n = m.

5. Nothing else is a natural number. That is, if a predicate P (n: IN) holds for zero
and is preserved by the successor operation, then it holds for all natural numbers:

P (0) ∧ ∀(n: IN :: P (n)⇒ P (sn)) ⇒ ∀(n: IN :: P (n)) (3.1)

3.1. EXAMPLES OF INDUCTIVE TYPES 41

Regarding this definition, we distinguish a base clause 1, a step clause 2, equality rules 3
and 4, and an induction clause 5. The induction clause is an instance of the elimination
principle for naturals (2.3), taking Tn := Pn.

Example 3.2 (Lists) For any type A, the type ClistA of cons lists is generated by:

` 2: ClistA

e:A; l: ClistA ` e+< l: ClistA

As for naturals, we have to give clauses saying that two lists are only equal if they are
constructed by the same constructor from equal arguments (no confusion):

∀(e; l :: e+< l 6= 2) ∀(e, e′; l, l′ :: e+< l = e′ +< l′ ⇒ e = e′ ∧ l = l′)

and an induction clause saying that all lists can be built by repeated application of the
construction rules (no junk): for predicates P (l: ClistA),

P2 ∧ ∀(e; l :: Pl⇒ P (e+< l)) ⇒ ∀(l :: Pl) .

Example 3.3 (Binary trees) The type BTreeA is generated by:

` 2: BTreeA

x:A ` 3.x: BTreeA

s, t: BTreeA ` s++ t: BTreeA

where 2 is a unit of ++:

s: BTreeA ` 2 ++ s = s = s++ 2

No other trees are identical (no confusion), i.e.:

s++ t = 2 ⇒ s = 2 ∧ t = 2

s++ t = u++ v ⇒ (s = u ∧ t = v) ∨ (s = 2 ∧ t = u++ v) ∨ (s = u++ v ∧ t = 2)

Finally, nothing else is a tree (no junk). That is, for predicates P (t: BTreeA), if

P2 ∧ ∀(x:A :: P (3.x)) ∧ ∀(s, t: BTreeA :: Ps ∧ Pt⇒ P (s++ t))

then ∀(s: BTreeA :: Ps).
We will see in example 4.5 that the notion of initial algebra avoids the formulation

of complicated no-confusion and no-junk conditions.

Example 3.4 (Join lists) The constructors for join lists JListA are the same as those
for BTreeA, but have the additional equation telling that ++ (called join) is associative,

s, t, u: JListA ` (s++ t) ++ u = s++ (t++ u).

We shall not spell out the complicated no-confusion condition; the no-junk condition is
the same as for binary trees.

42 CHAPTER 3. COMMON INDUCTION AND RECURSION PRINCIPLES

Example 3.5 (Rose trees) Rose trees and forests (e.g. Malcolm [52]) can be described
either as two mutually inductive types or as a single one using lists.

Making the latter choice, rose trees over some type A are inductively generated by:
any list f of rose trees together with some element x of A makes a rose tree noted x

√
f ,

i.e.

x:A, f : Clist(RTreeA) ` x
√
f : RTreeA

This is an iterated inductive definition in the sense of [55], as it builds upon another
inductively defined type, Clist. However, the use of iterated induction is not essential
here.

The alternative is to define rose trees and lists of them (named forests) simultane-
ously, by mutual induction:

x:A, f : ForestA ` x
√
f : RTreeA

` 2: ForestA

t: RTreeA, f : ForestA ` t+< f : ForestA

Example 3.6 (Ordinal notations) A more typical iterated inductive definition is the
following one, which builds upon the inductive type of naturals. Ordinal notations are
constructed from zero, a successor operation, and taking the limit of an infinite but
countable series of ordinal notations. They may be used to represent ordinals of the
so-called second number class. This type Ord is our first infinitary inductive type.

` 0: Ord

n: Ord ` sn: Ord

u: Ordω ` limu: Ord

Our final two examples illustrate rather different kinds of inductive definitions.

Example 3.7 (An inductive relation) Given a relation R:⊆ T 2, its transitive clo-
sure R(+) is specified by

R ⊆ R(+)

R(+) ·R(+) ⊆ R(+)

and: R(+) is the least relation w.r.t. ⊆ that satisfies these two rules.
By Knaster-Tarski (theorem 3.6), the unique solution to this specification is the

intersection of all relations that satisfy the two rules:

R(+) :=
⋂

(X:⊆ R |: R ⊆ X ∧ X ·X ⊆ X)

Similarly, the reflexive and transitive closure is

R(∗) :=
⋂

(X:⊆ R |: |=T | ⊆ X ∧ R ⊆ X ∧ X ·X ⊆ X)

Note the difference with the preceding examples: there we created new types by stating
new operations and equations, here we define a subset of an existing type (T 2) by giving
rules that refer only to existing operations.

3.2. MORE ON NATURAL NUMBERS 43

Example 3.8 (Infinite lists) The type A∞ of (total) infinite lists over A is isomorphic
with Aω, but we give a quite different axiomization. This is not an inductive type
definition like the examples 3.1–3.7, but we shall see that it is its categorical dual, a final
coalgebra instead of an initial algebra. The axioms are:

1. Any infinite list has a head: hd:A∞→ A.

2. Any infinite list has a tail: tl:A∞→ A∞.

3. For any type X and mappings h:X → A and t:X → X, there exists a family of
infinite lists l: (A∞)X such that:

hd.li = h.i ,

tl.li = l(t.i) .

4. Moreover, this family of lists l is unique: any other such family equals it.

Summary. Example 3.1 gave the most common form of inductive type definition;
example 3.2 defined a type with a parameter; example 3.3 gave a type with parameter
and equations; the join lists of example 3.4 added more equations; example 3.5 used
mutual induction, example 3.6 iterated induction.

Example 3.7 showed the difference between inductive type and inductive set defini-
tions, and example 3.8 displayed the categorical dual of inductive type definition.

3.2 More on natural numbers

Peano’s 5th axiom (3.1) constitutes the first induction principle. Of course one can
derive similar principles starting at a base different from zero. A well-known equivalent
principle is total induction. Let |<| := (λ s)(+), the transitive closure of the successor
relation λ s = {n: IN :: (n, sn) }.

Theorem 3.1 (Total induction) If a property P (n: IN) can be proven on the assump-
tion that it holds for smaller natural numbers, then it holds for all natural numbers:

∀(n: IN; |< n| ⊆ |P | :: Pn) ⇒ IN ⊆ |P | (3.2)

Note that |< n| ⊆ |P | abbreviates ∀(m: IN :: m < n⇒ Pm).

Proof. Use (3.1) substituting P (n) := |< n| ⊆ |P |.

Note that no separate treatment of some base case is needed.
Definitions of a recursive function f on natural numbers usually consist of a base

case, f.0 = b and an induction step of the form f.(n + 1) = g.(n, f.n). This is called
primitive recursion. Typed lambda calculi with natural numbers usually have a recursion
construct which allows such definitions. With the help of the iota operation, one can
derive it from the Peano axioms.

44 CHAPTER 3. COMMON INDUCTION AND RECURSION PRINCIPLES

Theorem 3.2 (Primitive recursion)

U : Type
b:U
g: IN× U → U

∃!f : IN→ U :: f.0 = b ∧ ∀n :: f. sn = g.(n, f.n)
(3.3)

Proof. This is an instance of theorem 3.7 below, for T := IN, |≺| := λ s, and s :=
((0;h) :: b | (sn;h) :: g.(n, hn)), for Peano’s axiom (3.1) says exactly that this ≺ is
well-founded (3.6).

Alternatively, existence of f is a special case of the elimination principle for naturals
(2.3) for nondependent types, Tn := U . Uniqueness follows: assume g: IN→ U satisfies
the same equations, then prove ∀n: IN :: g.n = f.n by Peano induction, which is an
instance of (2.3) too.

3.3 Inductive subset definitions

We summarize the standard theory of inductive set definitions, following the basic def-
initions from the first section of Aczel’s Introduction to Inductive Definitions [3]. This
theory deals with subsets of a set (or type) that has been constructed prior to the
inductive definition.

3.3.1 Sets inductively defined by rules

Example 3.7 defined R(+) as the least subset of T 2 that is closed under certain rules.
The other examples, 3.1 till 3.6, introduced new types, not subsets, but each of these
types can be characterized by saying that it equals its own least subset that is closed
under certain rules. Let us give the general form of such definitions.

Let type T be given. We define:

1. A rule is a pair (X,x) where X:PT is called the set of premisses and x:T is the
conclusion. A set of rules, Φ:P(PT × T), is also called a rule set.

2. If Φ is a rule set, then a set S:⊆ T is Φ-closed iff each rule in Φ whose premisses
are in S also has its conclusion in S, i.e. iff

∀(X, y):∈ Φ :: X ⊆ S ⇒ y ∈ S .

3. If Φ is a rule set, then I(Φ), the set inductively defined by Φ, is given by

I(Φ) :=
⋂

(S:⊆ T |: S is Φ-closed) . (3.4)

Note. Φ-closed sets exists; e.g. the type T itself. Also, the intersection of any collection
of Φ-closed sets is Φ-closed. In particular I(Φ) is Φ-closed and hence I(Φ) is the smallest
Φ-closed subset.

From the definition (3.4) of I(Φ) we get immediately the principle of Φ-induction:
If P (x:T) is a predicate, such that whenever (X, y):∈ Φ and X ⊆ |P | then Py, then Px
holds for every x:∈ I(Φ).

3.3. INDUCTIVE SUBSET DEFINITIONS 45

Definition (3.4) involves a second-order quantification. If one designs a logical calcu-
lus without quantification over arbitrary subsets, one might consider including inductive
set (or predicate) definitions as a primitive rule [55]. By the way, if a calculus includes
inductive mutually recursive type definitions in the style of section 5.2.2, then one gets
inductive predicate definitions as well.

3.3.2 The well-founded part of a relation

A slightly less general scheme of inductive subset definitions is based on well-founded
relations. The constructive idea of a well-founded relation is a generalization of the
principle of total induction (3.2), but its classical definition is different.

Let ≺ be a binary relation on a type T . The well-founded part of T for ≺, W (≺):⊆ T ,
is defined (classically) as the set consisting of those x:T for which there is no infinite
descending sequence x � s0 � s1 � · · ·. The relation ≺ is called well-founded iff
T = W (≺), and it is a well-ordering iff it is both well-founded and transitive (but see
(3.6) for the constructive definition of wellfoundedness). Note that the transitive closure
≺(+) of any well-founded relation is a well-ordering. The elements y:≺ x are called the
predecessors of x.

The set W (≺) can be defined inductively using the following rule set Φ≺.

Φ≺ := {x:T :: (|≺ x|, x) } (3.5)

The set inductively defined by Φ≺, I(Φ≺), is called the reachable part of T for ≺. The
principle of total induction (3.2) can now be formulated as IN ⊆ I(Φ<).

Theorem 3.3 W (≺) = I(Φ≺), classically.

Proof. ⊇: It suffices to show that W (≺) is Φ≺-closed. So assume |≺ x| ⊆ W (≺). To
show x ∈ W (≺), suppose x � s0 � · · ·. Then s0 ∈ |≺ x| ⊆ W (≺). But as s0 � s1 � · · ·,
s0 /∈W (≺), which gives a contradiction.
⊆: Let x:∈ W (≺) and S be Φ≺-closed. Supposing x /∈ S, we shall derive a contra-

diction by finding x � s0 � · · · showing that x /∈ W (≺). As x /∈ S, then |≺ x| 6⊆ S.
Hence there is an s0:≺ x such that s0 /∈ S. Repeating indefinitely we obtain si+1:≺ si

such that si+1 /∈ S.

Conversely, inductive definitions can often be rephrased in the form Φ≺ for a suitable
≺. Let Φ be a rule set on a type T ; we say Φ is deterministic iff

(X0, y) ∈ Φ ∧ (X1, y) ∈ Φ ⇒ X0 = X1 .

Let (≺Φ):⊆ T 2 be the relation |∈| · Φ ∪ { (x, y) |: y /∈ Φ>}, i.e.:

x ≺Φ y := y ∈ Φ> ⇒ ∃(X:PT :: x ∈ X ∧ (X, y) ∈ Φ) .

(Aczel [3, proposition 1.2.4] erroneously missed the condition y ∈ Φ>.)

Theorem 3.4 For deterministic Φ, one has (classically)

I(Φ) = I(Φ≺Φ) = W (≺Φ) .

46 CHAPTER 3. COMMON INDUCTION AND RECURSION PRINCIPLES

Proof. We have I(Φ≺Φ) = W (≺Φ) from theorem 3.3. Next,

I(Φ) ⊆ I(Φ≺Φ)
⇐ all Φ≺Φ-closed sets are Φ-closed {def. I (3.4)}
⇐ Φ ⊆ Φ≺Φ {def. closedness}
⇔ ∀(X, y):∈ Φ :: X = |≺Φ y| {def. Φ≺ (3.5)}
⇔ ∀(X, y):∈ Φ :: X = {x |: (x, y) ∈ |∈| · Φ} {def. ≺Φ, y ∈ Φ>}
⇔ Φ is deterministic {def. deterministic}

and:

I(Φ≺Φ) ⊆ I(Φ)
⇐ I(Φ) is Φ≺Φ-closed {def. I(Φ≺Φ)}
⇔ ∀y :: |≺Φ y| ⊆ I(Φ)⇒ y ∈ I(Φ) {def. Φ≺, closedness}
⇐ ∀((X, y):∈ Φ :: X ⊆ I(Φ)⇒ y ∈ I(Φ))

∧ ∀(y /∈ Φ> :: T ⊆ I(Φ)⇒ y ∈ I(Φ)) {def. ≺Φ}
⇔ True {def. I(Φ)}

Theorem 3.3 suggests us a constructive interpretation of well-foundedness. Con-
structively, we even take T ⊆ I(Φ≺) as the definition of well-foundedness. Thus, we
henceforth say ≺ is well-founded iff it admits transfinite induction:

P : PropT

∀y:T ; |≺ y| ⊆ |P | :: Py
T ⊆ |P |

(3.6)

For natural numbers with (≺) := (<), this is exactly the total induction principle (3.2).
There are several other constructive interpretations of well-foundedness possible,

which are classically equivalent:

Theorem 3.5 The three properties: ≺ admitting transfinite induction, ≺ having no de-
scending chains, and all nonempty subsets of T having a minimal element, are classically
equivalent. Formally these are:

T ⊆ I(Φ≺) (3.7)
∀s:Tω :: ∃i:ω :: si+1 6≺ si (3.8)

∀Q:PT ; ∃(Q) :: ∃q:∈ Q :: ¬∃(Q ∩ |≺ q|) (3.9)

((3.9) implies (3.8) constructively as well. (3.7) and (3.9) seem to be constructively
independent.)

Proof. (3.7)⇔ (3.8) is a corollary of theorem 3.3, for (3.8) says just T ⊆W (≺).
(3.8) ⇒ (3.9): Assume Q:PT , q:∈ Q and suppose ∀q:∈ Q :: ∃(Q ∩ |≺ q|). Then

we choose a descending sequence by taking s0 := q, and given si ∈ Q, choosing an
si+1:∈ Q ∩ |≺ si|. This contradicts (3.8).

3.3. INDUCTIVE SUBSET DEFINITIONS 47

(3.9) ⇒ (3.8): Given s:Tω, take Q := {i:ω :: si}. Then by (3.9), ¬∃(Q ∩ |≺ si|) for
some i, and in particular si+1 6≺ si.

A somewhat different use of well-founded relations is to conduct inductive proofs
over some given type. To find suitable relations, Paulson [69] described a number of
principles to construct well-founded relations.

3.3.3 Inductive definitions as operators

An “operator” (function) φ:PT → PT is monotonic iff (φ, φ) ∈ (⊆) → (⊆), i.e. iff
X:⊆ Y :PT implies φ.X ⊆ φ.Y . Given φ, let rule set Φφ be defined by

Φφ := { (X, y) |: y ∈ φ.X} .

For monotonic φ, S:PT is Φφ-closed just in case φ.S ⊆ S. So

I(Φφ) =
⋂

(S:PT |: φ.S ⊆ S) . (3.10)

Hence it is natural to write, still following Aczel [3], I(φ) for
⋂

(S:PT |: φ.S ⊆ S).
Conversely, all inductive definitions can be obtained using monotonic operators. For,

if Φ is a rule set on T we may define φ by

φ.Y := { y |: ∃X:⊆ Y :: (X, y) ∈ Φ} .

Then Y is Φ-closed just in case φ.Y ⊆ Y so that I(Φ) = I(φ).
An alternative characterization of I(φ) uses transfinite iterations φ(λ) for ordinals λ.

We skip this; see [3].

3.3.4 Fixed points in a lattice

The Knaster-Tarski theorem generalizes the fixed point property (3.10) of monotonic
operators on sets to complete lattices.

Theorem 3.6 (Knaster-Tarski) Any monotonic operator F in a complete lattice
(U ;v) has a least fixed point

fixF := u(X:U |: F.X v X)

and hence by duality a greatest fixed point

t(X:U |: X v F.X) .

Proof. We have F.(fixF) v fixF because for any X:U , if F.X v X then fixF v X so
F.(fixF) v F.X v X.

Conversely, fixF v F.(fixF) follows from F.(F.(fixF)) v F.(fixF), which holds by
monotonicity of F .

48 CHAPTER 3. COMMON INDUCTION AND RECURSION PRINCIPLES

We show the same proof in linear form:

F.(fixF) = fixF

⇔ fixF v F.(fixF) ∧ F.(fixF) v fixF {lattice}
⇐ F.(F.(fixF)) v F.(fixF) ∧ F.(fixF) v fixF {def. fix}
⇔ F.(fixF) v fixF {F monotonic}
⇔ ∀X; F.X v X :: F.(fixF) v X {def. fix}
⇐ ∀X; F.X v X :: F.(fixF) v F.X {assumption X}
⇐ ∀X; F.X v X :: fixF v X {F monotonic}
⇔ True {def. fix}

3.4 From induction to recursion

Once one has a well-founded relation ≺ (or a deterministic rule set), one can define
recursive functions provided one has the iota-correspondence of subsection 2.11.1 be-
tween functions and single-valued relations. The proof would be somewhat simpler in
set theory, as functions and single-valued relations are identified there.

Theorem 3.7 (transfinite recursion) If (≺):⊆ T 2 is well-founded, and one has a
recursion step

s(x:T ; h:U |≺x|):U

then one can construct a unique f :UT such that

∀x:T :: fx = s(x; f |≺x) . (3.11)

(f |≺x is the restriction of f to |≺ x|, which will henceforth be noted just f .)

Proof. Let the infix binary relation R:⊆ T × U , that is to become the graph of f , be
inductively defined as the least relation X such that

∀x:T ; h:U |≺x| :: ∀(y:≺ x :: y X hy)⇒ x X s(x;h) . (3.12)

To prove single-valuedness of R we apply transfinite induction (3.6) to Px := ∃! |x R|
(the predicate stating that x has a unique R-image), and see that ∀(x:T :: ∃! |x R|) holds
provided

∀x:T ; ∀(z:≺ x :: ∃! |z R|) :: ∃! |x R| .

So assuming x:T and induction hypothesis

∀z:≺ x :: ∃! |z R| , (3.13)

we have to prove ∃! |x R|. From (3.13) we get (using iota) a unique

g: !(z:≺ x . |z R|) . (3.14)

Taking then y := s(x; g), one has by (3.14) and R satisfying (3.12) that x R y, so ∃ |x R|.

3.5. CONCLUSION 49

Now supposing some z:T satisfies x R z too, we must show z = y. By definition of
R (3.12), we have z = s(x;h) for some h with ∀(y:≺ x :: y R hu). By uniqueness of g
(3.14) it follows that h = g, and hence z = s(x;h) = s(x; g) = y.

This completes the constructive proof of single-valuedness ofR. So let p(x:T):∃! |x R|
be the corresponding proof term, and take fx := ι(px). Then fx = s(x; f) holds
by (3.12).

For uniqueness, assume gx = s(x; g|≺x). Then by transfinite induction one proves
∀(x:T :: gx = fx).

We may note that this theorem can be generalized to dependent types U : TypeT .
We shall do this in theorem 6.2: given a recursion step

s(x:T ; h: Π(y:≺ x :: Uy)):Ux ,

there is a unique f : Π(T ;U) satisfying (3.11). The proof goes analogous; one replaces
|R|:⊆ T × U by R:⊆ Σ(T ;U).

3.5 Conclusion

We have seen our language ADAM at work in some inductive definitions. In the rest of
the thesis, we develop a general theory for inductive types, based on categorical notions
which we introduce in the next chapter.

50

Chapter 4

Categories and algebra

In this chapter we develop within ADAM the categorical framework for manipulating
inductive types in the style advocated by Hagino [37], i.e. as initial objects in a category
of (F,G)-algebras, for functors F and G. This differs from the style used in the branch
of mathematics called universal algebra, where inductive types are formed as monads,
being themselves functors with appropriate natural transformations. In the next three
chapters we shall concentrate on particular induction and recursion rules as they fit in
this categorical framework.

In section 4.1 we introduce basic categorical notions in our notation, in 4.2 we in-
troduce the categorical view of algebras over some signature. In 4.3 inductive types
appear as initial F,G-algebras, and in section 4.4 we take these algebras modulo equa-
tions, which are formed either on an (abstract) syntactic or semantic level. Section 4.5
looks at the relationship with well-founded relations, and 4.6 relates the initial algebra
approach to the monads of universal algebra. In 4.7, we make a comparison with the
framework of Algebraic Specification.

4.1 Categorical notions

Category theory provides a number of general purpose concepts and theorems. We will
use some of the most basic notions, which we introduce here in the notation of ADAM .
For a gentle introduction to some of the basic concepts, see Rydeheard [76].

4.1.1 Categories. First the big type of categories. There are several equivalent
definitions in use. We take a category C to be a type, also named C, of objects together
with for any pair of objects X,Y a type (or set) X → Y in C of morphisms (or arrows)
from X to Y , called its hom-set, and with associative arrow composition ◦̄ and identity
arrows IdX . This is formalized below in the notation of paragraph 2.6.3.

Define C: Cati: Typei+1 :=: (
C: Typei;
X,Y : C ` (X → Y [in C]): Typei;
Variables X,Y, Z, U : C;

f :X → Y, g:Y → Z, h:Z → U ;

4.1. CATEGORICAL NOTIONS 51

IdX :X → X,
f ◦̄ g:X → Z;
IdX ◦̄ f = f, f ◦̄ IdY = f,
(f ◦̄ g) ◦̄ h = f ◦̄ (g ◦̄ h)

)

Note that any universe of types together with functions as morphisms form a category,

TYPEi: Cati+1 := (Typei; (→); I, (◦̄)) .

4.1.2 Functors. A functor between two categories is a mapping of both objects and
arrows that preserves identities and composition:

Define F : (C: Cat)→ (D: Cat) :=: (
F : C → D in TYPE;
Variables X,Y, Z: C; f :X → Y, g:Y → Z;
F : (X → Y in C)→ (F.X → F.Y in D);
F.IdX = IdF.X ,
F.(f ◦̄ g) = F.f ◦̄ F.g

)

We have identity functors I, and composition of functors denoted by reverse juxta-
position, so the type of categories with functors forms itself a (big) category:

IC : C → C := (I; I)
F : C → D, G:D → E ` GF : C → E := (F ◦̄G; F ◦̄G)

CATi: Cati+1 := (Cati; (→); I, (F,G :: GF))

4.1.3 Natural transformations. For categories C, D and functors F,G: C → D, a
natural transformation φ:F .→ G is a family of arrows φX:C :F.X → G.X in D such that,
for any f :X → Y in C, one has

φX ◦̄G.f = F.f ◦̄ φY : F.X → G.Y .

In relational notation, this is (φX , φY) ∈ F.f → G.f . Note the similarity with the
typing φX :F.X → G.X !

As natural transformations are easily composed with each other,

φ:F .→ G, ψ:G .→ H ` φ ◦̄ ψ:F .→ H := (X :: φX ◦̄ ψX) ,

the class of functors F : C → D with natural transformations as arrows forms the functor
category DC .

Natural transformations φ:F .→ G can be composed with functors in two ways:

H:D → E ` H.φ:HF .→ HG := (X :: H.φX)
J :B → C ` φJ.:FJ

.→ GJ := (X :: φJ.X)

52 CHAPTER 4. CATEGORIES AND ALGEBRA

4.1.4 Product and exponent categories. The product Π(D; C) of a family of
categories is a category whose objects and arrows are tuples,

D: Type; C: CatD ` Π(D; C) := (Π(D; C);
X → Y := Π(d:D :: Xd → Yd in Cd);
IdX := (d :: IdXd

),
f ◦̄ g := (d :: fd ◦̄ gd)
)

D: Type; C: Cat ` CD: Cat := Π(d:D :: C)

4.1.5 Dualization and initiality. For any category C = (C; (→); Id, (◦̄)), there is a
dual or opposite category where all arrows are reversed,

Cop := (C; (←); Id, (◦))
where (X ← Y) := (Y → X in C) ,

f ◦ g := g ◦̄ f .

So (X → Y in Cop) = (Y → X in C).
An initial object X of a category C is one for which, for any object Y : C, there is a

unique morphism from X to Y , noted ([X → Y])C as in [30], or rather just ([Y]) when C
and X are evident.

Define X: Init C :=: (X: C; ([Y : C]): !(X → Y))

A final (or terminal) object of C is an initial object of Cop.
The notion of initiality, and all its derived notions, can be weakened: a weakly initial

object X of C is one for which, for any object Y : C there is a morphism from X to Y ,
not necessarily unique.

4.1.6 Product and sum objects. A category C is said to have (binary) products
iff for any pair of objects, B: C2, we have an object B0 × B1: C and two morphisms
πi:B0 × B1 → Bi, such that for any X: C; p: (X,X) → B there is a (unique) mediating
morphism 〈p〉 = 〈p0, p1〉:X → B0 ×B1 characterized by

f = 〈p0, p1〉 ⇔ ∀i: 2 :: f ◦̄ πi = pi .

Using the algebraic terminology of section 4.2, one can say that 〈p〉 is a homomorphism

〈p〉: (X; p)→ (B0 ×B1; π) ,

so that (B0 ×B1; π) is the final object in the category of algebras (X; p).
More generally, given a type N , category C has products over N iff for any tuple B: CN

there is a final object (Π(N ;B); π) in the category of algebras (X: C; p: ∆.X → B). Here,
∆: C → CN is the diagonal functor X 7→ (i :: X).

4.2. ALGEBRAS AND SIGNATURES 53

Similarly, C is said to have (binary) sums (or coproducts) iff Cop has binary products,
noted (B0 +B1;σ). Given B: C2; X: C; s:B → (X,X), the mediating morphism is noted
as

[s0, s1]: (B0 +B1; σ)→ (X; s) .

Note that the category of types has products and sums over all types in the category
indeed, and the notations 〈p〉 and [s] were already introduced in paragraphs 2.5.3 and
2.6.1 for the mediating morphisms in this category.

4.1.7 Subobjects. For an object A: C of any category, we can define the category
of subobjects of A,

PCA := { (H:C; r:H → A) }
(H; r)→ (H ′; r′) in PCA := { f :H → H ′ in C |: r = f ◦̄ r′}

We define a preorder (≤) on subobjects, and any functor on C extends to a functor on
PCA (which preserves (≤)):

(H; r) ≤ (H ′; r′) := ∃((H; r)→ (H ′; r′) in PCA)
F.(H; r) := (F.H;F.r)

For C := TYPE, a subobject (H; r) represents the subset {z:H :: r.z }:PA, and any
subset S:PA is represented by a subobject (S; I). Relation (≤) represents subset inclu-
sion (⊆), and extended functors preserve not only inclusions S ⊆ S′, but also inclusion
maps:

F.(I:S → S′) = I:F.S → F.S′ . (4.1)

Note that the latter property is not automatic for functors on the subset category
(PA; (→)) or on SET, for inclusion maps are not identity arrows when S 6= S′.

4.2 Algebras and signatures

An algebra is essentially a tuple of types Ti called the carriers or sorts, where i ranges
over some type N called the set of sort names, together with a tuple of functions φj

called the operations, where j ranges over a type M of operation names. The domain
and codomain (range) of the operations is specified by a signature.

We use a more liberal notion of signature than in the tradition of Algebraic Specifi-
cation, see section 4.7. The signature of an algebra consists of the types N and M , and
two functors F,G: TYPEN → TYPEM , specifying for each operation its domain and
codomain, so that φj : (F.T)j → (G.T)j .

The type of signatures is thus

Sign: Type := { (N,M : Type; F,G: TYPEN → TYPEM) }

and the type of algebras with a given signature Σ = (N,M ;F,G) is

Alg Σ := { (T : TypeN ; φ:F.T → G.T in TYPEM) } .

54 CHAPTER 4. CATEGORIES AND ALGEBRA

These are called Σ-algebras, or (F,G)-algebras when N and M are evident. As a special
case, if N = M and the codomain functor G is the identity, one speaks about F -algebras,
and their type is noted AlgF .

The type of homomorphisms between two Σ-algebras (T ;φ), (U ;ψ) is the subtype
of those arrows f :T → U (that is, tuples of functions fi:Ti → Ui for i:N) that preserve
the operations,

(T ;φ)→ (U ;ψ) := { f :T → U in TYPEN |: φ ◦̄G.f = F.f ◦̄ ψ} .

Using the relational interpretation of ‘→’ (section 2.12.4), this condition for f :T → U
to be a homomorphism reads

(φ, ψ) ∈ F.f → G.f .

Note the similarity with the type φ:F.T → G.T !
One has identity and composition of homomorphisms, so algebras and homomor-

phisms form a category ALG Σ for any Σ: Sign.
This notion of algebra is easily generalized by replacing TYPEN and TYPEM by

arbitrary categories C, D. Thus one has signatures Σ = (C,D: Cat; F,G: C → D) and
Σ-algebras (T : C; φ:F.T → G.T in D). This corresponds to the notion of F,G-dialgebra
of Hagino [37].

Example 4.1 The ring of naturals with zero, one, addition and multiplication,

(IN; K 0,K 1, (+), (·)) ,

forms an algebra of signature

Σ := (N := 1, M := 4; F.X := (1, 1, X2, X2), G.X := (X,X,X,X)) . (4.2)

This same algebra can also be given as an F -algebra, where F.X := 1+1+X2+X2, using
the fact that the type of morphisms A → (X,X) in TYPE2 is (naturally) isomorphic
to A0 +A1 → X in TYPE.

4.3 Initial algebras, catamorphisms

Let Σ = (C,D;F,G) be a (generalized) signature. According to the definition of initial
objects in 4.1.5, a Σ-algebra (T ; τ) is initial iff there exists a unique homomorphism
(noted ([U ;ψ])) from (T ; τ) to any other Σ-algebra (U ;ψ), i.e.

([U ;ψ]) : !((T ; τ)→ (U ;ψ)) .

Such homomorphisms, further abbreviated to ([ψ]), are called catamorphisms as in the
Bird-Meertens formalism [57]. ([ψ]) satisfies the property that, for all f :T → U ,

τ ◦̄G.f = F.f ◦̄ ψ ⇔ f = ([ψ]) (4.3)

from which one has immediately the following characteristic equation of ([ψ]) :

τ ◦̄G.([ψ]) = F.([ψ]) ◦̄ ψ .

4.3. INITIAL ALGEBRAS, CATAMORPHISMS 55

Example 4.2 We can build an initial Σ-algebra where Σ is given by (4.2). Take the
type A∗ of strings over the alphabet A := {0, 1, +, *}, and the operations

z.0 := 0

o.0 := 1

x⊕ y := +xy

x⊗ y := *xy

Let T :⊆ A∗ be the least subset that is closed under these operations. Then by theorem
4.3 below, the algebra (T ; z, o, (⊕), (⊗)) is an initial object of the category ALG Σ.
That is, it has a unique arrow f to any other algebra (U ;ψ) in this category, inductively
defined by equations like f.(+xy) = ψ2.(f.x, f.y) for x, y:∈ T .

Thus, initial algebras, when they exist, are often thought of as sets of syntactic terms.

Example 4.3 From the primitive recursion principle (3.3) we get immediately the fol-
lowing iteration principle.

U : Type
b:U
g:U → U

∃!f : IN→ U :: f.0 = b ∧ f. sn = g.(f.n)
(4.4)

Now this says exactly that the natural numbers, with zero and successor, form an initial
algebra Υ := (IN; K 0, λ s) of signature

Σ := (1, 2; F.X := (1, X), G.X := (X,X)) ,

for the equations say that f is a homomorphism from Υ to (U ; K b, g). Equivalently,
(IN; [K 0, λ s]) is an initial F -algebra where F.X := 1 + X. We will often omit the
brackets in such cases, writing just (IN; K 0, λ s).

We will see in chapter 6 that the iteration principle in generalized form is equivalent
to other recursion principles. (End of example)

Many other inductive types also form initial F -algebras for some F . In fact, we
can take the notion of initial algebra in the category TYPEN as our basic notion of
inductive type.

Example 4.4 The algebra of lists of example 3.2,

(ClistA; [K 2,+<]) ,

is the initial F -algebra where F.X := 1 + A × X . And the algebra of rose trees and
forests of example 3.5,

(RTreeA,ForestA; (
√

), [K 2, (+<)]) ,

is the initial F -algebra where F : TYPE2 → TYPE2 is

F.(X,Y) := (A× Y, 1 + (X × Y)) .

(End of example)

56 CHAPTER 4. CATEGORIES AND ALGEBRA

Identity is a catamorphism, and constructors are always isomorphisms here:

Theorem 4.1 (Lambek’s lemma) For any initial F -algebra (T ; τ), Id is the catamor-
phism in (T ; τ)→ (T ; τ).

Proof. τ ◦̄ Id = F.Id ◦̄ τ , so Id is a homomorphism and hence the unique one.

The main use of this fact is in proving that a morphism f :T → T equals identity:
f = Id⇔ τ ◦̄ f = F.f ◦̄ τ .

Theorem 4.2 The constructor τ :F.T → T of an initial F -algebra (in any category) is
an isomorphism.

Proof. We seek to define some δ:T → F.T . It should be a pre-inverse of τ :

δ ◦̄ τ = Id

⇔ δ ◦̄ τ ∈ (T ; τ)→ (T ; τ) {theorem 4.1}
⇔ τ ◦̄ (δ ◦̄ τ) = F.(δ ◦̄ τ) ◦̄ τ
⇐ τ ◦̄ δ = F.δ ◦̄ F.τ
⇔ δ ∈ (T ; τ)→ (F.T ;F.τ)

So taking for δ the catamorphism ([F.T ;F.τ]) will do. It remains to check that this δ is
a post-inverse as well:

τ ◦̄ δ = Id

⇔ F.δ ◦̄ F.τ = Id {τ ◦̄ δ = F.δ ◦̄ F.τ above}
⇔ F.(δ ◦̄ τ) = F.Id {functors}
⇐ δ ◦̄ τ = Id

⇔ True {δ is a pre-inverse}

Thus, we can indeed use τ∪ := ([F.T ;F.τ]).

We now prove that an F -algebra being initial coincides with having no junk and
no confusion. Let F be a functor in TYPE, extended to subsets (paragraph 4.1.7) and
(T ; τ) an F -algebra; we say that (T ; τ) has no confusion iff τ is injective, i.e. τ ·τ∪ = IdF.T ,
and no junk iff T is minimal, i.e. iff for all S:⊆ T :

τ ∈ F.S → S ⇒ T ⊆ S . (4.5)

Theorem 4.3 F -algebra (T ; τ) is initial iff it has no junk and no confusion.

Proof. ⇒: Let (T ; τ) be initial, then theorem 4.2 comprises that τ is injective. Further-
more, assume τ ∈ F.S → S, then ([τ]) ∈ (T ; τ) → (S; τ). But theorem 4.1 says ([τ]) = I,
so T ⊆ S.
⇐: Let (U ;ψ) be another F -algebra; we seek to define the unique homomorphism

f : (T ; τ) → (U ;ψ). The homomorphism condition (τ, ψ) ∈ F.f → f gives rise to the
inductive definition of f as being the smallest subset f :⊆ T × U such that:

∀g:⊆ T × U ; g single-valued; (x, y):∈ F.g :: g ⊆ f ⇒ (τ.x, ψ.y) ∈ f .

4.4. ALGEBRAS WITH EQUATIONS 57

It then follows from minimality of T and injectivity that f is total and single-valued,
using (4.5) with

S := {x:T |: ∃!f [x]} .

One clearly has that f is a homomorphism f : (T ; τ)→ (U ;ψ), and one proves by exten-
sionality and minimality that f equals any other such homomorphism.

4.4 Algebras with equations

Some types that have an inductive character, can be seen as F -algebras, but not initial
ones, because they violate the no-confusion condition. These can often be described by
using a subcategory of algebras that satisfy certain equations.

Example 4.5 Considering example 3.4, the type of joinlists with its constructors, note
that (JListA; [K 2,3, (++)]), is an F -algebra with F.X := 1 + A + X2. But, as its
constructors are not injective, we see that this algebra is not initial in ALGF .

One can, however, form the subcategory of those F -algebras (T ; [K e, f, (⊕)]) that
satisfy the equations

s:T ` e⊕ s = s, s⊕ e = s

s, t, u:T ` (s⊕ t)⊕ u = s⊕ (t⊕ u).

One may check that the algebra of joinlists is initial in this subcategory.
(End of example)

Now, what is the general form of a family of equations? The first idea is to view an
equation as a pair of “syntactic” terms with free variables. We shall introduce syntactic
terms in a rather abstract style, that allows for infinitary terms.

The second, even more abstract, view of equations is that an equation may be any-
thing that establishes in a uniform way, for any algebra of the given signature, a binary
relation on the carrier of the algebra. This idea gives rise to the notion of semantic
equations.

We took the distinction between syntactic and semantic equations from Manes [54].
Fokkinga [30, chapter 5] introduced “transformers” and “laws” to describe equations;
these are in fact a slight generalization of Manes’ semantic operations and equations.

4.4.1 Syntactic terms. Let Σ = (N,M ;F,G) be a signature, so C = TypeN ; we
can give an inductive definition of the sets of terms for this signature Σ. First, fix for
each carrier index i:N the set (type) Vi of (substitutable) variable names for this carrier.
So V is an object in C. We define the type of syntactic terms over V for carrier i, (T.V)i,
as follows:

1. The sets of variable names are embedded in the sets of terms through ηV :V → T.V
in TYPEN

2. For each operation index j:M , there is a syntactic operation τV j building composite
terms, so that τV :FT.V → GT.V in TYPEM

58 CHAPTER 4. CATEGORIES AND ALGEBRA

3. These terms are all distinct and there are no more, i.e., (T.V ; τV , ηV) is an initial
algebra of signature

Σ′ := (N,M +N ; 〈F,KV 〉, 〈G, I〉)

(for simplicity, we identify TypeM+N with TypeM ×TypeN as in 2.12.5.)

4. The choice of T.V is uniform with respect to V , i.e., T: C → C is a functor and τ
and η are natural transformations τ :FT

.→ GT and η: I .→ T.

Given any Σ-algebra (X;φ) and a valuation of the variables v:V → X in C, one can
interpret terms over V as denoting elements of X via the catamorphism ([φ, v]): T.V →
X . Check that (X;φ, v) is another Σ′-algebra!

4.4.2 Syntactic equations. For a syntactic equation over signature Σ one needs two
terms for one common carrier index i and over a common set of variables V : TypeN .
We require that each equation has its own set of (relevant) variables V , in order that a
valuation has to specify values only for relevant variables.

Thus, an equation is an instance of

(V : TypeN ; i:N ; s, t: (T.V)i)

where (T.V ; τ, η) is the term algebra over V . An algebra (X;φ) satisfies such an equation
iff, for all valuations v:V → X, the denoted elements are equal:

([φ, v])i.s = ([φ, v])i.t ;

or, put differently, iff the relation

{v:V → X :: ([φ, v])2i .(s, t) }

is contained in the equality relation |=Xi |.
In general, one needs a family of equations, (d:D :: (Vd; id; sd, td)), to delimit the

required subcategory. For the example of joinlists above, taking [K e, f, (⊕)] := τ , the
three equations would be

〈 (1; e⊕ η.0, η.0), (1; η.0⊕ e, η.0), (3; (η.0⊕ η.1)⊕ η.2, η.0⊕ (η.1⊕ η.2)) 〉 .

4.4.3 Semantic equations. In the category of types, a semantic equation should
provide, for any Σ-algebra Φ, a relation EΦ:⊆ Φ2. Uniformity requires at least that any
homomorphism f : Φ→ Ψ respects the relation, i.e. f2 ∈ EΦ→ EΨ.

In an arbitrary category C with binary products, one can represent relations R:A ∼ B
by subobjects (H; r):PC(A×B). To avoid products, we will use spans:

(H: C; r: (H,H)→ (A,B) in C2) .

In TYPE, such a span (H; r) corresponds to the relation {h:H :: (r0.h, r1.h) }. We have
a preorder ≤ on spans as on subobjects:

(H; r) ≤ (H ′; r′) := ∃m:H → H ′ :: r = (m,m) ◦̄ r′

4.4. ALGEBRAS WITH EQUATIONS 59

The identity relation on A: C is represented by the span (A; Id).
Now, we define a semantic equation (or law) E over a signature Σ = (C,D;F,G) to

be, for any Σ-algebra (X;φ), a span E(X;φ):X ∼ X which is uniformly defined in the
sense that

E(X;φ) = (H.X; r(X;φ))

for a functor H: C → C together with two natural transformations r0, r1:HU .→ U , where
U : ALG Σ→ C is the forgetful functor (X;φ) 7→ X. That is, one has

r: ((X;φ): ALG Σ . H.X → X)2

satisfying the promotion law that, for all Σ-algebras Φ, Ψ,

∀f : Φ→ Ψ in ALG Σ :: rjΦ ◦̄ f = H.f ◦̄ rjΨ .

The rj are called semantic operations. Algebra (X;φ) satisfies equation E iff E(X;φ)
is contained in the identity relation, E(X;φ) ≤ (X; Id), which is equivalent to (4.6):

(H.X; r(X;φ)) ≤ (X; Id)
⇔ ∃m:H.X → X :: r(X;φ) = (m,m) ◦̄ Id

⇔ r0(X;φ) = r1(X;φ) (4.6)

One checks easily that our first uniformity requirement, that homomorphisms respect
semantic equations, is satisfied indeed. The set of all algebras that satisfy a law forms a
subcategory,

ALG(Σ;E) := {Φ: ALG Σ |: r0Φ = r1Φ} .
Fokkinga [30, chapter 5] calls a natural transformation r:HU .→ JU a transformer

of type (F,G) → (H,J). The current notion of semantic operation (following Manes)
corresponds to transformers of type (F,G) → (H, I). Transformers can be composed
both horizontally and vertically, which gives rise to algebraic manipulations:

r: (F,G)→ (H,J); r′: (F,G)→ (J,K) ` r ◦̄ r′ := (Φ :: rΦ ◦̄ r′Φ) : (F,G)→ (H,K)
r: (F,G)→ (H,J); s: (H,J)→ (K,L) ` sr := (Φ :: s(U.Φ; rΦ)) : (F,G)→ (K,L)

We now show that semantic equations really generalize syntactic ones, and moreover,
that a single semantic equation suffices.

Theorem 4.4 Any family of syntactic equations corresponds to a single semantic equa-
tion, provided the base category has sums and exponents.

Proof. Given a family of syntactic equations (d:D :: (Vd; sd, td)), we have to find a law
(H; r) such that

∀(d:D; v:Vd → X :: ([φ, v]).sd = ([φ, v]).td) ⇔ r0(X;φ) = r1(X;φ) . (4.7)

That’s fairly simple; take

H.X := Σ(d:D :: XVd) ;
r(X;φ) := (d; v) 7→ (([φ, λv]).sd, ([φ, λv]).td) ,

then the righthand side of (4.7) unfolds to the lefthand side.

We shall see in section 8.3 that for certain signatures, called polynomial, initial
(Σ;E)-algebras do generally exist.

60 CHAPTER 4. CATEGORIES AND ALGEBRA

4.5 Initial algebras related to well-founded relations

For bijective F -algebras, we will define a predecessor relation that is well-founded just
when the algebra is initial. We cannot do this for algebras with equations, nor does an
arbitrary well-founded relation correspond to some initial algebra.

Let F : TYPE→ TYPE be a functor, extended to subsets, that preserves nonempty
intersections,

∃A; Xi:A:PT ` F.
⋂

(i:A :: Xi) =
⋂

(i:A :: F.Xi) ,

and (T ; τ) a bijective F -algebra. We define the set of predecessors of x:T as the least
set X:⊆ T for which x ∈ τ [F.X] . So we have a relation on T :

|≺ x| :=
⋂

(X:⊆ T |: x ∈ τ [F.X])

We must check that this set satisfies x ∈ τ [F.X] itself:

∀x:T :: x ∈ τ [F.|≺ x|]
⇔ ∀y:F.T :: y ∈ F.

⋂
(X |: τ.y ∈ τ [F.X]) {τ is surjective: x = τ.y}

⇔ ∀y:F.T :: y ∈ F.
⋂

(X |: y ∈ F.X) {τ is injective}
⇔ ∀y:F.T :: y ∈

⋂
(X:⊆ T ; y ∈ F.X :: F.X) {F preserves

⋂
}

⇔ True

Theorem 4.5 For F, T, τ,≺ as above, T has no junk iff ≺ is well-founded.

Proof.

T has no junk
⇔ ∀S:⊆ T ; τ ∈ F.S → S :: T ⊆ S
⇔ ∀S:⊆ T ; ∀(x:T ; x ∈ τ [F.S] :: x ∈ S) :: T ⊆ S
⇔ ∀S:⊆ T ; ∀(x:T ; |≺ x| ⊆ S :: x ∈ S) :: T ⊆ S {See below}
⇔ ≺ is well-founded

It remains to prove x ∈ τ [F.S]⇔ |≺ x| ⊆ S.
⇒: Immediate, by definition of ≺.
⇐: When |≺ x| ⊆ S, then τ [F.|≺ x|] ⊆ τ [F.S]. As x ∈ τ [F.|≺ x|], we are done.

(Classically, ≺ being well-founded implies τ being surjective, so that requirement could
be dropped.)

If one has an algebra with equations, τ is no longer injective so this construction of
≺ would not make sense. Indeed, take the initial algebra (T ; a, b, f) in the category of
algebras

{ (T : TYPE; a, b:T, f :T → T) |: f.a = f.b} .

Then the set |≺ f.a| of immediate predecessors of f.a would have to be { a } and { b } at
the same time.

4.6. AN ASIDE: MONADS 61

Conversely, not all well-founded relations (≺):⊆ T 2 correspond to some initial F -
algebra with equations (or without). For, take the type T := { 0, 1 } with the ordering
0 ≺ 1. A corresponding algebra should have some operation f :T → T with f.0 = 1 .
But then it would also have an element f.1 with 1 ≺ f.1 , which T has not.

4.6 An aside: monads

Universal (categorical) algebra usually talks about inductive types in the form of monads,
see Manes [54]. A nice introduction is also given by Lambek and Scott in [46, page 27–
34]. As a side trip in our exposition, we summarize this concept here and establish its
relationship to initial F -algebras.

A monad on a category C is a triple (T ; η, µ) consisting of a functor and two natural
transformations, typed by

T : C → C
η : IC

.→ T

µ : TT
.→ T ,

that satisfy the three equations

T.η ◦̄ µ = IdT = ηT. ◦̄ µ , µT. ◦̄ µ = T.µ ◦̄ µ . (4.8)

If C is TYPE, one may think of T.V as a type of structured values with sub-values
drawn from V . Transformation η creates a value consisting of a single subvalue, and
transformation µ merges a structured value with its structured subvalues..

Example 4.6 The monad of lists in the category of types is given by T.X := X∗,
ηX .x := 〈x〉, and µ being the join function that concatenates a list of lists into a single
list, so µ.〈a, b〉 = a ++ b . To get some understanding of the monad equations (4.8), we
apply them to respectively the list 〈x, y〉 and the list of lists of lists 〈〈a, b〉, 〈c, d〉〉, and
get:

µ.〈〈x〉, 〈y〉〉 = 〈x, y〉 = µ.〈〈x, y〉〉 , µ.µ.〈〈a, b〉, 〈c, d〉〉 = µ.〈µ.〈a, b〉, µ.〈c, d〉〉 .

The following theorem gives a link with initial F -algebras.

Theorem 4.6 1. For any functor F , if (T.V ; [τV , ηV]) is a uniformly defined initial
(F + KV)-algebra (so that τ and η are natural transformations), then define

µV :TT.V → T.V := ([T.V ; [τV , IdT.V]])

to make a monad (T ; η, µ).

2. Conversely, any monad (T ; η, µ) can be made into a T+KV -algebra (T.V ; [µV , ηV]),
but not necessarily into an initial one.

62 CHAPTER 4. CATEGORIES AND ALGEBRA

Proof 1. Check that µV is correctly typed (its domain is an initial F + K(T.V)-alge-
bra, so see that (T.V ; [τV , IdV]) is an algebra of the same signature). As µ is clearly
polymorphic, it is a natural transformation by the naturality theorem D.1. Then we
have to check (4.8). By the catamorphism property we have the following.

τT. ◦̄ µ = F.µ ◦̄ τ (4.9)
ηT. ◦̄ µ = IdT. (4.10)

The equality ηT. ◦̄ µ = IdT. goes

ηT. ◦̄ µ
= σ1 ◦̄ [τT., ηT.] ◦̄ µ
= σ1 ◦̄ (F.µ+ IdT.) ◦̄ [τ, IdT.] {µ is a catamorphism}
= IdT. ◦̄ σ1 ◦̄ [τ, IdT.]
= IdT.

Then to check T.η ◦̄ µ = IdT., we use theorem 4.1 saying that f = IdT.V iff

(F.f + IdV) ◦̄ [τ, η] = [τ, η] ◦̄ f

which is equivalent to
F.f ◦̄ τ = τ ◦̄ f ∧ η = η ◦̄ f .

Instantiating this to f := T.η ◦̄ µ, we calculate first

τ ◦̄ T.η ◦̄ µ
= FT.η ◦̄ τT. ◦̄ µ {τ is natural}
= FT.η ◦̄ F.µ ◦̄ τ {(4.9)}
= F.(T.η ◦̄ µ) ◦̄ τ {functor}

and second

η ◦̄ T.η ◦̄ µ
= η ◦̄ ηT. ◦̄ µ {η is natural}
= η ◦̄ IdT. {(4.10)}
= η

Finally we derive µT.V ◦̄ µV = T.µV ◦̄ µV by proving that both sides are equal to
([T.V ; [τV , µV]]). Note that f = ([T.V ; [τV , µV]]) iff

τTT.V ◦̄ f = F.f ◦̄ τV ∧ ηTT.V ◦̄ f = µV .

So together we have four proof obligations to check.

τTT. ◦̄ µT. ◦̄ µ
= F.µT. ◦̄ τT. ◦̄ µ {(4.9)}

4.7. ALGEBRAIC SPECIFICATION 63

= F.µT. ◦̄ F.µ ◦̄ τ {(4.9)}
= F.(µT. ◦̄ µ) ◦̄ τ ,

ηTT. ◦̄ µT. ◦̄ µ
= IdTT. ◦̄ µ {(4.10)}
= µ ,

τTT. ◦̄ T.µ ◦̄ µ
= FT.µ ◦̄ τT. ◦̄ µ {τ is natural}
= FT.µ ◦̄ F.µ ◦̄ τ {(4.9)}
= F.(T.µ ◦̄ µ) ◦̄ τ ,

ηTT. ◦̄ T.µ ◦̄ µ
= µ ◦̄ ηT. ◦̄ µ {η is natural}
= µ ◦̄ IdT. {(4.10)}
= µ

2. It is obviously a T + KV -algebra. It need not be initial, as shown by the following
counterexample. Let C := TYPE, T := K 1, let η and µ be the unique transformations
to K 1, and V := 1. The carrier of the initial T + KV -algebra is then 2, not 1.

4.7 Algebraic Specification

Let us make a few remarks about the relation between the approach sketched here and
the tradition of Algebraic Specification (A.S.) as reviewed by Wirsing [87].

A.S. uses a notion of signature that is more restrictive than our categorical formula-
tion, in that the argument and result types of operations must be sorts from the algebra
itself. Such an algebra is called plain in 5.2.2. Furthermore, the sets of sorts, operations,
and arguments of each operation are often required to be finite. Thus, a signature Σ
consists of finite numbers or name sets n,m for the sorts and operations, and arities
(dj , cj):n∗ × n specifying the domain and codomain of the operation named by j :

Σ = (n,m: IN; d: (n∗)m, c:nm)

The algebras of signature Σ are given by:

(T : Typen; τj:m: Π(k: #dj :: T(djk))→ T(cj))

A data type specification is given in both approaches by means of a signature with
axioms. A.S. is more liberal in that the axioms may contain inequations, conditional
equations, or even unrestricted axioms in first order logic. The main difference lies in
the interpretation and derivational use of such a specification.

In our approach, we define the data type explicitly to be an initial algebra of the
given signature, which needs to contain only the basic constructors and if necessary
additional equations. The signature should be of a form that guarantees existence of

64 CHAPTER 4. CATEGORIES AND ALGEBRA

such an algebra. We use full logic, even higher order if needed, to exploit initiality in
defining derived functions and in deriving theorems. The logic may be restricted for
specific purposes.

In A.S., one should distinguish between the formal application and the semantic
interpretation of a specification. Formal derivations may only use the specified axioms,
so that derived theorems hold for all algebras of the given signature. As a consequence,
the signature must contain additional operations and axioms describing their behavior.
A specification of lists for example must either contain operations yielding the head,
tail, and length of a list, or a recursion operator. There is no formal guarantee that the
signature axioms are consistent. The logic is often quite restricted, for example purely
equational, allowing only finitary operations, and not containing function types.

One can prove consistency by meta-reasoning on the semantic level, where one dis-
tinguishes initial and terminal interpretations. For example, one can point out some of
the operations as being constructors, prove that the sub-signature of these constructors
has an initial model, and prove that this model has indeed operations that satisfy the
remaining axioms. For terminal interpretations, see section 7.5.

A.S. has the advantage of admitting several alternative semantic concepts, like partial
or continuous algebras. A simple logic is of course simpler to implement, to master, and
to analyze.

4.8 Concluding remarks

Now that we have the basic categories of algebras, the stage is set for discussing the
various forms that inductive and recursive definitions may take. The next chapter studies
forms of inductive type definitions themselves, the subsequent one recursive function
definitions over inductive types. The dual forms follow in chapter 7.

65

Chapter 5

Specifying inductive types

In the previous chapter, we introduced the notion of initial algebra. By viewing inductive
types as initial algebras, we can define them up to isomorphism by giving the appropriate
signature. However, not all algebra signatures have initial algebras. In this chapter we
seek schemes for signatures that do have initial algebras, such that concrete inductive
type definitions fit into the scheme.

We discuss only the abstract form that such schemes may take, not the concrete
syntax that has to be defined in order to write signatures in a concrete language. We
start with single inductive types, where an admissible functor F is specified by means of
a family of sets. The generalization to mutually inductive types in section 5.2 diverges
into several alternatives. In section 5.3 we have a look at producing admissible functors
through inductive rules themselves. The use of positive type expressions may be seen as
a special case of this.

The name ‘Type’ as we use it stands for any universe Typei from the hierarchy.
But it is relevant that inductive types in one universe Typei are understood to be initial
algebras in all higher universes too, in order that one can use recursion to define other
types.

5.1 Single inductive types

Suppose we want to introduce a single inductive type, T : Type. In sections 4.3 and
4.4 we have seen how giving a signature consisting of a collection of constructors and
equational axioms suffices to describe T . We discuss two ways to abstractly specify this
collection.

We postpone the introduction of equations. So, in this section, we stipulate that
objects built either by different constructors, or by one constructor from different argu-
ments, are always different.

5.1.1 Operator domains

The most common approach in classical set theory (see for example Manes [54]) of giving
a general scheme for initial algebras, is to identify for each constructor θ its arity as a

66 CHAPTER 5. SPECIFYING INDUCTIVE TYPES

cardinal number p: Card so that θ:T p → T . Note that a constructor with arguments of
other types, say θ:A×T p → T , can be regarded as a family of constructors θa:A:T p → T .

Subsequently, all constructors with equal arity p have to be collected in a single
family τp indexed by a set Ωp, so we get the typing

τp: (T p → T)Ωp

or equivalently
τp: Ωp × T p → T .

Thus, the family of sets
Ω: SetCard

determines the number and arity of all constructors. It is called an operator domain.
The pair (T ; τ) forms an F -algebra where:

F.X := Σ(p: Card :: Ωp × T p)

Unfortunately, taking a functor of this form does not guarantee that an initial F -
algebra exists in SET. We shall see that it does exist when Ω is bounded, i.e. Ωn

is empty for all n above some cardinal m. Also, when Ω0 is empty, then the empty
algebra, consisting of T := ∅, τ0 the empty tuple, and all other τp being tuples of
(empty) functions t 7→ t0, is trivially initial. But:

Theorem 5.1 When Ω is not bounded and Ω0 is nonempty, then Ω does not have an
initial algebra in SET.

Proof. Suppose (T ; τ) were initial; we shall define (with choice) an injection f : Set→ T
by means of set-recursion (recursion over the wellfounded relation ∈, (A.7)).
For any set s, let p be its cardinality and choose a surjection φs: p → s. Let q be the
least cardinal q ≥ p such that Ωq is nonempty, and choose es: Ωq. Then define

f.s := τqes.t where tr:<q :=
{
f.(φs.r) if 0 ≤ r < p
f.(φs.0) if p ≤ r < q

Note that in the second case, φs.0 is defined because if q > p then Ωp is empty so p > 0.
One checks easily that f.s = f.s′ implies s = s′. But such an injection cannot exist.

Objections against the use of operator domains in type theory are the following:

• As we just showed, extra conditions are needed to guarantee existence of an initial
algebra with operator domain Ω.

• It may be unnatural or in constructive logic impossible to identify the arity as a
cardinal number. To overcome this, one can use types rather than cardinals, so
that Ω: TypeType.

• It may be unnatural to group constructors according to their arity. For example,
an algebra may contain a family of constructors θn:ω:Tn → T which one would
prefer to keep apart from other constructors for type T .

5.1. SINGLE INDUCTIVE TYPES 67

5.1.2 Operators with arity

An approach better fitted to type theory is to specify the arity of each constructor τj as
a type. This is really the algebraic specification approach, but with finite sets replaced
by possibly infinite types. The general form is:

τa:A:TBa → T (5.1)

So, the signature is characterized by the type A, the index domain of the constructors,
and the tuple of types B, Ba being the index domain of the constructor with index
a:A. We call the pair (A;B): FamType an operator specification, and the corresponding
signature is (1, A; (X 7→ (a :: XBa)), (X 7→ (a :: X))).

If we have an inductive type characterized by a list of constructors with arguments
of other types as well, we can transform these into the form of (5.1) as follows. First,
write the constructor types as:

τj:M : Σ(x:A′
j :: TB′jx)→ T (5.2)

Next, the index j can be eliminated by transforming τ into (5.1) where we substitute

A: Type := Σ(M ;A′)
B(j;x) := B′

jx

τ(j;x) := t 7→ τj .(x; (y :: t(j; y)))

The types of τ in (5.2) and in (5.1) are isomorphic:

Π(j:M :: Σ(x:A′
j :: TB′jx)→ T) ∼= Π(j:M :: Π(x:A′

j :: TB′jx → T))
∼= Π((j;x): Σ(M ;A′) :: TB′jx → T)

Example 5.1 In example 3.1 (natural numbers), we had two constructors, namely
“zero” with 0 arguments, and “successor” with 1 argument. That is, τ0:T 0 → T and
τ1:T 1 → T , which results in the operator specification (A := 2; B := (0, 1)).

For example 3.2 (lists over E), we have originally

τ0: 1→ T

τ1:E × T → T

which is first transformed into

τ0: Σ(0: 1 :: T 0)→ T

τ1: Σ(e:E :: T 1)→ T

and next into (5.1) where A := 1 + E and B := ((0; 0) :: 0 | (1; e) :: 1). We might use a
labeled sum for A, for example:

A ::= empty | cons(E) ; B := (empty :: 0 | cons(e) :: 1)

(End of example)

68 CHAPTER 5. SPECIFYING INDUCTIVE TYPES

As a third step, one can replace the constructor family τ by a single constructor,

τ : Σ(x:A :: TBx)→ T . (5.3)

Note that we can define a functor F : TYPE→ TYPE by:

F.(U : Type) := Σ(x:A :: UBx) ,
F.(f :U → V) := (x; t) 7→ (x; (y :: f.ty)) .

We will call a functor polynomial iff it is (naturally) isomorphic with a functor of this
form, as it is a sum of products. It is well known that for polynomial F , an initial
F -algebra does always exist, and we will name it µF . Two different constructions of µF
are given in chapter 8. A final F -coalgebra exists too and is named νF .

The type inductively defined by F is the carrier of the algebra µF , which is called µF
too. This type is a fixed point of functor F , modulo isomorphism. Not all functors do
have fixed points; for example the powerset functor (with P.f := X 7→ {x:∈ X :: f.x })
cannot have one for cardinality reasons. But most type-construction principles, such as
generalized sum and product, and taking fixed points itself, transform polynomial func-
tors into polynomial functors. This is exploited in the next subsection. Also, for many
theoretical purposes, it’s simpler to deal with a functor than with A and B explicitly.

An operator specification that corresponds to an operator domain Ω is

(A := Σ(Card; Ω); B(n;a):A := n) .

Note that Σ(Card; Ω) is a set indeed if and only if Ω is bounded.
Conversely, given an operator specification (A;B), a corresponding operator domain

is
Ωp := { a:A |: Ba

∼= p} .

This assumes that every type is isomorphic to some cardinal p, which requires the axiom
of choice.

5.1.3 The wellordering of a single inductive type

The inductive type T characterized by operator specification (A;B) is wellordered by
the subterm relation |<| := |≺|(+), where ≺ is the immediate subterm relation:

|≺| := {x:A; t:TBx; y:Bx :: (ty, τ.(x; t)) } . (5.4)

Type T is actually Martin-Löf’s so-called wellordering type W(A,B) described in [56]
where the constructor is called sup after supremum as, for a:A and t: W(A,B)Ba,
sup(a; t): W(A,B) is the supremum of the family (y:Ba :: ty) with respect to <.

5.2 Mutually inductive types

By mutually inductive types we mean a family of types Ti:N for some index domain N ,
that are inductively generated by constructors τ whose arguments may come from any

5.2. MUTUALLY INDUCTIVE TYPES 69

Ti from the family. The cardinality of N is normally greater than 1. Algebra (T ; τ) can
again be viewed as an initial (N,M ;F,G)-algebra.

A well-founded relation over a family of types is simply a well-founded relation over
the sum type of the family, Σ(N ;T). Specifying a family of N types by simultaneous
induction is somewhat more complicated. We give two alternatives for the abstract
specification of mutually inductive types. The first is the generalization of the polynomial
functor approach of 5.1.2 to exponential categories, but the required generalization of
“polynomial” is not evident. The second alternative is the abstract rendering of plain
(multi-sorted) algebra signatures, mentioned in 4.7.

5.2.1 Using an exponential category

We may use an endo-functor on the exponential category TYPEN , i.e. F : TYPEN →
TYPEN , that is polynomial as defined below. Then the tuple of mutually inductive
types and their constructors appears as an initial algebra µF = (T : TypeN ; τ :F.T → T).
As arrows in an exponential category are tuples of arrows in the component categories,
τ consists of functions τi: (F.T)i → Ti for each i:N .

We give two ways to characterize such polynomial functors F on TYPEN . In both
ways, a type Ai indexes the constructors for type Ti.

The first way, perhaps the most straightforward one, lets type B((i; a), j) (also writ-
ten Biaj) index the arguments of type Tj that the constructor for type Ti indexed by
a:Ai shall get. Thus, for some

A: TypeN ; B: TypeΣ(N ;A)×N ,

we let the constructors be typed by

τi:N ;a:Ai : Π(j:N :: TBiaj
j)→ Ti . (5.5)

Equivalently, τ :F.T → T where F is given by

(F.X)i := Σ(a:Ai :: Π(j:N :: XBiaj
j)) .

With the second way, Bia: Type indexes all arguments that the constructor τia shall
get, and si(a; k):N (or siak) indicates what the type of the argument indexed by k:Bia
must be. Thus, for some

A: TypeN ; B: Π(i:N :: TypeAi); s: Π(i:N :: NΣ(Ai;Bi)) ,

we let the constructors be typed by

τi:N ;a:Ai : Π(k:Bia :: T(siak))→ Ti . (5.6)

Equivalently, τ :F.T → T where F is given by

(F.X)i := Σ(a:Ai :: Π(k:Bix :: X(siak))) .

This is the approach proposed by Petersson [72, section 4]. An advantage over the plain
algebra approach below is that one gets a simpler case-distinction construct when no
recursion is needed.

A context-free grammar corresponds to an algebra specification of form (5.6), where
all Ai and Bia are finite:

70 CHAPTER 5. SPECIFYING INDUCTIVE TYPES

Example 5.2 The rose trees and forests of example 3.5 can be described by a context-
free grammar, given a nonterminal E:

RTree ::= E
√

Forest

Forest ::= 2 | RTree +< Forest

This corresponds to an algebra (5.6), where

N := 2;
A := (E, 2);
B := ((e :: 1), (0, 2));
s := (((e; 0) :: 1), ((1; 0) :: 0 | (1; 1) :: 1))

Theorem 5.2 Both characterizations (5.5) and (5.6) are reducible to each other, pro-
vided one has equality types.

Proof. (5.6)⇒ (5.5): We can find an initial solution to (5.5) for some given (A;B) by
finding an initial solution to (5.6) with

Bia := Σ(j:N :: Biaj); sia(j; k) := j ,

and then taking τia := p 7→ τia.((j; k) :: pjk).

(5.5)⇒ (5.6): Using equality, apply (5.5) with Biaj := {k:Bia |: siaj = k}.

5.2.2 Plain algebra signatures

The choice above, that τ be an arrow in the category TYPEN , implied that each type
Ti had its own (family of) constructor(s). Alternatively, one can give a single family of
constructors and indicate for each one its codomain. This makes us return to the notion
of plain algebra as we used in connection with Algebraic Specification in section 4.7,
but here infinite families of constructors and arguments are allowed, rather than finite
sequences. So given

M : Type; B: TypeM ; d:NΣ(M ;B); c:NM ,

let τ be typed by
τj:M : Π(k:Bj :: T(djk))→ T(cj) . (5.7)

So (T ; τ) is not an F -algebra, but it is an initial (N,M ;F,G)-algebra where

(F.X)j := Π(k:Bj :: X(djk))
(G.X)j := X(cj)

Theorem 5.3 Formulations (5.6) and (5.7) reduce to each other, provided one has
equality types.

5.3. PRODUCTION RULES FOR POLYNOMIAL FUNCTORS 71

Proof. (5.7) ⇒ (5.6): Apply (5.7) with M := Σ(N ;A); B := B; d(i; a)k := siak;
c(i; a) := i.

(5.6) ⇒ (5.7): Here one needs equality. Apply (5.6) with Ai := { j:M |: cm =N i};
Bij := Bj ; dijk := djk.

This formulation is particularly suited to build types of proof trees for inductively
defined relations:

Example 5.3 The type P (n,m) of proof trees for n < m as defined in example 3.7,
together with appropriate constructors, is initial in the category of algebras

(P : TypeIN2

; τ(0;n): 1→ P (n, sn), τ(1; n,m):P (n,m)→ P (n, sm)) .

So here we have (5.7) with:

N := IN2

M := IN + IN2

B := (0;n) :: 0 | (1; n,m) :: 1
d := (1; n,m; 0) :: (n,m)
c := (0;n) :: (n, sn) | (1; n,m) :: (n, sm) .

(End of example)

This example gives us an alternative way to define (<): first define (P ; τ) to be an initial
algebra in the above category, and then define n < m to hold iff P (n,m) is nonempty. If
one’s calculus has inductive type definitions as a primitive, then this avoids the second
order quantification occurring in example 3.7. Or, inductive relation definitions can be
allowed as primitive themselves by stating that the category of predicates T : PROPN

with constructors typed by (5.7) has an initial object.
A drawback of this plain algebra approach is that it seems less suited for dualization;

see paragraph 7.1.2.

5.3 Production rules for polynomial functors

Instead of requiring that the typings of operations have exactly a polynomial form like
(5.1) or (5.3), the class of polynomial type expressions may be defined by production
rules. This is based on the fact that the class of polynomial functors contains projections
and constant functors, and is closed under taking sums, products and inductive types.

Let PF(N,M):⊆ (TYPEN → TYPEM) be the subtype of polynomial functors as
defined in subsection 5.2.1 and closed under isomorphism; PF(N) is PF(N, 1); note that
PF(N,M) ∼= PF(N)M . We state the following fact:

Theorem 5.4 Type PF(N) is closed under the following rules:

i:N ` (X 7→ Xi) ∈ PF(N) (5.8)
T : Type ` (X 7→ T) ∈ PF(N) (5.9)

F : Fam PF(N) ` ΣF ∈ PF(N), ΠF ∈ PF(N) (5.10)
F : PF(N +M,M) ` (X 7→ µ(Y : TypeM 7→ F.(X,Y))) ∈ PF(N,M), (5.11)

(X 7→ ν(Y : TypeM 7→ F.(X,Y))) ∈ PF(N,M) (5.12)

72 CHAPTER 5. SPECIFYING INDUCTIVE TYPES

where ΣF abbreviates the sum functor (X 7→ Σ(i: DomF :: Fi.X)), and similarly for
ΠF .

To understand (5.11), let F : PF(M + N,M), and note that for X: TypeN we have
that (Y 7→ F.(X,Y)) is an endofunctor in TYPEM indeed, so µ(Y 7→ F.(X,Y)) is an
M -tuple of types. We write this tuple as µF.X. To see that µF : TypeN → TypeM is
a functor, let g:X → X ′ be an arrow in TYPEN ; we have to find an arrow µF.g. We
take

µF.g:µF.X → µF.X ′ := ([µF.X ′;φ])

where

φ:F.(X,µF.X ′)→ µF.X ′ := F.(g, I) ◦̄ τ .

Proving that each (µF.X)j , for j:M , is polynomial in X is quite complicated; we do not
try it here.

5.3.1 Positive type expressions

One possibility for employing the above observation in a language design is to syntacti-
cally distinguish polynomial functors as type expressions EX that are (strictly) positive
in X. We say that a type expression is positive in X iff all free occurrences of type
variables X are positive, i.e. not within the domain of any product or function type, nor
in the parameter or argument of any user-defined operation.

This is done for example in Nuprl [18], where one can form the inductive type µ(X 7→
EX), and in Paulin-Mohring’s extension [22, 68] of CC, where one can form the inductive
type that is closed under a finite number of constructors with positive argument types.

A drawback is that in building EX from X, one can neither apply user-defined type
constructors (as we did in our example 3.5, where a user-defined type of lists was applied
in defining the type of rose trees), nor apply other constants or variables to X. (Normally
one can replace the constant with its definition.)

5.3.2 A type of polynomial functors

As an alternative, one might include the class of polynomial functors as a primitive type
itself, say PF(N,M), which is closed under composition and the operations listed in
theorem 5.4. This would allow user definitions of polynomial functors, and polymorphic
operations to be instantiated to polynomial functors. One has to find easy notations,
for example noting the projection functor (X 7→ Xi) by the name of parameter i.

5.4 Adding equations

To any of the three approaches above, one can add syntactic or semantic equations as
in section 4.4. Semantic equations can be used if one’s language admits such a semantic
approach, otherwise one can develop concrete syntax for syntactic terms and equations.

5.5. CONCLUSION 73

5.5 Conclusion

We characterized the signatures that may be admitted for defining inductive types, in
the following ways.

1. Using a bounded operator domain–this approach does not fit very well to type
theory

2. Giving an arity for each constructor, by which means one defines a polynomial
functor

3. For mutually inductive types, generalizing the notion of polynomial functor to an
exponential category in either of two ways

4. Using generalized plain algebra signatures, which leaves a bit more freedom for the
type definition

5. Using polynomial functors characterized by production rules, or by syntactic con-
ditions on type expressions

74

Chapter 6

Recursors in constructive type
theories

In this chapter we present several styles of introducing recursive functions on an inductive
type. The inductive type may be characterized in two ways:

1. as a well-founded relation (≺):⊆ T 2, for which we have recursion principle (3.11):

U : Type
s(x:T ; h:U |≺x|):U
∃!f :UT :: ∀x:T :: fx = s(x; f)

2. or as an initial F -algebra (T ; τ) (section 4.3), for which we have

U : C
ψ:F.U → U

([U ;ψ]): !{ f :T → U |: f ◦ τ = ψ ◦ F.f}
. (6.1)

This is sometimes called the iteration principle, and ([U ;ψ]), or ([ψ]), is called a
catamorphism [57]. If C is TYPE, we have a well-founded predecessor relation ≺
as given in section 4.5.

We shall first derive the recursion principle for initial F -algebras, then we derive in
6.2 the construction of dependent functions using either kind of inductive type charac-
terization. In 6.3 we consider Mendler’s style of recursion which comes closer in form to
the unrestricted form of recursive equation, f(τ.y) = Ef,y. Finally we shall see in 6.4
how each style of recursion generalizes to mutual recursion, and how an alternative form
of mutual recursion may be useful.

6.1 Algebraic recursion, or paramorphisms

The function ψ:F.U → U in (6.1) that determines the value ([ψ]).x of a catamorphism
cannot use the predecessors y:≺ x directly but only the values ([ψ]).y. To overcome this,
the following recursion principle is derived, which corresponds more closely to (3.11).
We formulate name it in the style of Meertens [58].

6.1. ALGEBRAIC RECURSION, OR PARAMORPHISMS 75

Theorem 6.1 (Paramorphisms) An F -algebra (T ; τ) in a category with binary prod-
ucts is initial iff one has

U : C
ψ:F.(T × U)→ U

∃!f :T → U :: f ◦ τ = ψ ◦ F.〈Id, f〉
(6.2)

The function f produced by this rule is called a paramorphism, and is noted [[ψ]].

Proof. ⇒:

f ◦ τ = ψ ◦ F.〈Id, f〉
⇔ 〈Id, f〉 ◦ τ = 〈τ ◦ F.π0, ψ〉 ◦ F.〈Id, f〉 {functor properties}
⇔ 〈Id, f〉 = ([T × U ; φ]) {(6.1), defining φ := 〈τ ◦ F.π0, ψ〉}
⇔ f = π1 ◦ ([φ]) {as Id = π0 ◦ ([φ])}

So we have:
[[ψ]] := π1 ◦ ([φ]) where φ := 〈τ ◦ F.π0, ψ〉 . (6.3)

⇐: Assume (6.2), and ψ:F.U → U . We seek to find a unique homomorphism:

f ◦ τ = ψ ◦ F.f
⇔ f ◦ τ = ψ ◦ F.(π1 ◦ 〈Id, f〉) {products}
⇔ f ◦ τ = (ψ ◦ F.π1) ◦ F.〈Id, f〉 {functor}
⇔ f = [[ψ ◦ F.π1]] { (6.2) }

See section 7.1 for dual catamorphisms called anamorphisms. Malcolm [52] and Fokkinga
[30] give these and some more schemes of recursive functions with names like zygomor-
phisms, mutumorphisms, prepromorphisms, and postpromorphisms.

Example 6.1 For natural numbers, with F.X := 1 +X and [K 0, λ s] = τ , one can get
the usual recursor RU :U → (IN → U → U) → IN → U of typed lambda calculus, that
satisfies

RUag0 = a RUag(sn) = gn(RUagn) ,

by taking for RUag the paramorphism [[ψ]] where

ψ := [K a, ((n, u) 7→ gnu)] : 1 + T × U → U .

(End of example)

It should be noted that, though [[ψ]] as defined by (6.3) satisfies the equation given
by (6.2), the reduction rule that we actually get is somewhat different:

[[ψ]] ◦ τ => π1 ◦ ([φ]) ◦ τ => π1 ◦ φ ◦ F.([φ]) => ψ ◦ F.([φ])

76 CHAPTER 6. RECURSORS IN CONSTRUCTIVE TYPE THEORIES

6.2 Recursive dependent functions

We now specialize to the category of types. Usage of dependent types allows the trans-
finite induction principle (3.6) and transfinite recursion (theorem 3.7) for well-founded
relations to be unified into a single dependent recursion principle. We have two similar
principles for initial F -algebras, described in 6.2.2 and 6.2.3. In all cases, the principle
does not need to state that the constructed function f is unique, for this is derivable by
an auxiliary application of the very same principle!

6.2.1 Dependent recursion over a well-founded relation.

Theorem 6.2 A relation (≺):⊆ T 2 on a type T is well-founded iff one has:

U : TypeT ;
s(x:T ; h: (z:≺ x . Uz)):Ux
∃f : Π(T ;U) :: ∀x:T :: fx = s(x; f |≺x)

(6.4)

Proof. ⇒: This runs parallel to theorem 3.7. First we inductively define a subset
R:⊆ Σ(T ;U) by

∀x:T ; h: (z:≺ x . Uz) :: ∀(z:≺ x :: (z;hz) ∈ R)⇒ (x; s(x;h)) ∈ R .

Then one proves by transfinite induction (3.6) that R is single-valued in the sense that

∀x:T :: ∃!u:Ux :: (x;u) ∈ R ,

which proof we skip here. Letting p be the corresponding proof term, we can take
fx := ι(px) .
⇐: Rule (6.4) subsumes (3.6) by taking Ux := Px. Note also that it subsumes

theorem 3.7 by substituting Ux := U .

6.2.2 Dependent recursion on an initial F -algebra. To formulate a rule for de-
pendent recursion on an initial F -algebra, one has to find a way to encode the hypothesis
of the induction step. This hypothesis should contain, for some y:F.T , for each prede-
cessor z:T of τ.y the function value fz:Uz. One possibility is to replace each predecessor
z by the pair (z; fz): Σ(T ;U), so the hypothesis becomes

h:F.Σ(T ;U) .

A second possibility, which we shall consider in 6.2.3, is to add to y the tuple of all these
function values fz. Pursuing the first possibility, we get the following.

Theorem 6.3 An F -algebra (T ; τ) in the category of types is initial iff the following
rule holds.

U : TypeT ;
s(h:F.Σ(T ;U)):U(τ.(F.λfst.h))
∃f : Π(T ;U) :: ∀y:F.T :: f(τ.y) = s(F.(z 7→ (z; fz)).y)

(6.5)

6.2. RECURSIVE DEPENDENT FUNCTIONS 77

Proof. ⇒: assume that (T ; τ) is initial, and that the rule premises hold. To get the
dependent function f , we seek some f ′:T → Σ(T ;U) with fst(f ′.x) = x, so that we can
take fx := snd(f ′.x) . We derive f ′ from the specification of f as follows.

λfst ◦ f ′ = I ∧ ∀(y :: snd(f ′.(τ.y)) = s(F.f ′.y))
⇔ λfst ◦ f ′ ◦ τ = τ ◦ F.(λfst ◦ f ′) ∧ ∀(y :: snd(f ′.(τ.y)) = s(F.f ′.y)) {th. 4.1}
⇔ ∀y :: f ′.(τ.y) = (τ.(F.λfst.(F.f ′.y)); s(F.f ′.y))
⇔ f ′ ◦ τ = (h 7→ (τ.(F.λfst.h); s(h))) ◦ F.f ′

⇔ f ′ = ([h 7→ (τ.(F.λfst.h); s(h))]) {catamorphism}

(This proves also that f ′, and hence f , is unique.)

⇐: assuming (6.5), we prove that (T ; τ) is initial by deriving the paramorphism
rule (6.2). Given some U : Type and ψ:F.(T × U) → U , apply (6.5) to Ux := U ;
s(h) := ψ.(F.((z;u) 7→ (z, u)).h) . Say this yields f ′: Π(T ;U), then take f.x := f ′x,
which clearly satisfies the requirement f ◦ τ = ψ ◦ F.〈I, f〉 .

It remains to check that this f is unique. So, assuming that some g:T → U satisfies
g ◦ τ = ψ ◦ F.〈I, g〉 too, we prove that f and g are equal:

f = g

⇔ ∀x:T :: f.x = g.x

⇔ ∃Π(T ;U ′) where U ′x := (f.x = g.x)
⇐ ∃Π(h:F.Σ(T ;U ′) :: U ′(τ.(F.λfst.h)) {(6.5)}
⇐ ∀h:F.Σ(T ;U ′) :: f.(τ.(F.λfst.h)) = g.(τ.(F.λfst.h))
⇔ ψ ◦ F.(〈I, f〉 ◦ λfst) = ψ ◦ F.(〈I, g〉 ◦ λfst) : F.Σ(T ;U ′)→ T {property f and g}
⇐ 〈I, f〉 ◦ λfst = 〈I, g〉 ◦ λfst : Σ(T ;U ′)→ T

⇔ ∀x:T ; f.x = g.x :: (x, f.x) = (x, g.x)
⇔ True

As the f : Π(T ;U) in (6.5) is unique, we can give it a name: µ rec(U ; s). We remark that
the proof for the ‘⇐’-part in theorem 6.3 contains two abstract applications of (6.5), one
to construct a paramorphism and one to prove that it is unique.

Most typical examples of dependent recursion arise from inductive proofs: given
a property P : PropT and an inductive proof of ∀x :: Px, the proof object (or tree)
corresponding to this proof is given by a dependent recursion. A simple concrete example
is the following.

Example 6.2 Consider the natural numbers as an initial (K 1+I)-algebra, (IN; [K 0, λs]).
We construct, for any n: IN, the function fn: IN2 → INn that transforms (a, b) into the
n-tuple (a, a · b, . . . , a · bn−1). The recursion equations are

f0 = (a, b) 7→ ()
fsn = (a, b) 7→ (a, fn.(a · b, b))

78 CHAPTER 6. RECURSORS IN CONSTRUCTIVE TYPE THEORIES

Now, equation (6.5) says that for any s of appropriate type, there exists an f such that
f0 = s(0; 0), fsn = s(1;n; fn). So we just have to take

Un := INn

s(0; 0) := (a, b) 7→ ()
s(1;n; f ′) := (a, b) 7→ (a, f ′.(a · b, b))

and obtain an f := µ rec(U ; s) that satisfies our recursion equations.

6.2.3 Dependent recursion in Paulin style. The second possibility is to keep
y:F.T separate from the tuple of values fz. This is done in most languages with depen-
dent recursion, where the inductive type is usually defined by a finite set of production
rules. A formulation based on a functor F seems only possible for polynomial F , and
requires us to extend F to operate on families of types and on dependent functions. This
was done by Coquand and Paulin in [22], as follows.

Let F.X = Σ(a:A :: XBa). We extend F to operate on families U : TypeT and on
dependent functions f : Π(T ;U), in such a way that:

U : TypeT

F ′.U : TypeF.T

f : Π(T ;U)
F.f : Π(F.T ;F ′.U)

For y:F.T , (F.f)y has to be the tuple of function values fz for all components z:T of
y, and (F ′.U)y is the type of this tuple. Thus:

(F ′.U)(a; t) := Π(y:Ba :: U(ty))
(F.f)(a; t) := (y :: f(ty))

You may note that F.Σ(T ;U) ∼= Σ(F.T ;F ′.U) . Now, the rule becomes (we leave the
proof to the reader):

U : TypeT

s(y:F.T ; h: (F ′.U)y):U(τ.y)
∃f : Π(T ;U) :: ∀y:F.T :: f(τ.y) = s(y; (F.f)y)

(6.6)

6.3 Mendler’s approach

Mendler [59] introduces a somewhat different style of recursion over an initial F -alge-
bra µF . The idea is here that in order to define a (dependent) function f : Π(µF ;U),
one may assume that the function is already available on some subset X:⊆ µF while
defining it on F.X. This gives a recursive equation for f that is simpler than the one
appearing in (6.5). Mendler’s thesis [59] uses a distinguished inclusion relation on types
that is defined by separate production rules, and which we note (⊆m):⊆ Type2. The
rule looks like:

U : TypeT ;
X: Type; X ⊆m T ; h: Π(X;U) ` s(h): Π(y:F.X :: U(τ.y))
∃f : Π(T ;U) :: ∀y:F.T :: f(τ.y) = sfy

(6.7)

6.3. MENDLER’S APPROACH 79

Note that, as in (6.4) and (6.5), rule (6.7) does not need to state that the constructed f
is unique, for this can be derived by employing the dependency in the type of U , again
taking U ′x := (f.x = g.x) .

Example 6.3 Rule (6.7) yields the recursion equations of example 6.2 when we define
s simply by:

sf(0; 0) := (a, b) 7→ ()
sf(1;n) := (a, b) 7→ (a, f(n).(a · b, b))

(End of example)

Derivation of (6.7) requires a semantical analysis of the predicate ⊆m, which we will
not do here. But in his paper [60] Mendler replaced the inclusion relation X ⊆m T by
an explicit function i:X → T , and used only non-dependent functions. Correctness of
this principle requires that the polymorphic dependency on X, h, and i be uniform in
a certain way. This is covered by the naturality principle, described in appendix D for
languages without dependent types. The resulting rule holds in any category C with
binary products. Thus we get:

U : C;
X: C; i:X → T ; h:X → U ` sX(i, h):F.X → U
where s is natural
∃!f :T → U :: f ◦ τ = sT (Id, f)

(6.8)

where ‘s is natural’ means that, for all p:X → X ′; i′:X ′ → T ; h′:X ′ → U , one has

sX(i′ ◦ p, h′ ◦ p) = sX′(i′, h′) ◦ F.p .

As indicated in appendix D, any lambda-definable s is natural. Therefore, this require-
ment can be omitted in calculi where one has only lambda-definable objects.

Example 6.4 We construct a non-dependent variant of the function of example 6.2,
namely f : IN→ IN2 → Clist IN satisfying

f.0 = (a, b) 7→ 2

f. sn = (a, b) 7→ a+< f.(a · b, b)

This function is produced by (6.8) when we take for s:

sX(i, h).(0; 0) := (a, b) 7→ 2

sX(i, h).(1;x) := (a, b) 7→ a+< h.(a · b, b)

Theorem 6.4 An F -algebra (T ; τ) in any category with binary products is initial iff it
satisfies (6.8).

80 CHAPTER 6. RECURSORS IN CONSTRUCTIVE TYPE THEORIES

Proof. ⇒: Let (T ; τ) be initial, and assume an s that satisfies the premises of (6.8).
We calculate the unique solution for f by showing that 〈Id, f〉 is a homomorphism, as
follows.

f ◦ τ = sT (Id, f)
⇔ f ◦ τ = sT (π0 ◦ 〈Id, f〉, π1 ◦ 〈Id, f〉) {products}
⇔ f ◦ τ = sT×U (π0, π1) ◦ F.〈Id, f〉 {s is natural}
⇔ 〈τ, f ◦ τ〉 = 〈τ, s(π0, π1) ◦ F.〈Id, f〉〉 {products}
⇔ 〈Id, f〉 ◦ τ = 〈τ ◦ F.π0, s(π0, π1)〉 ◦ F.〈Id, f〉 {products, F a functor}
⇔ 〈Id, f〉 = ([T × U ; 〈τ ◦ F.π0, s(π0, π1)〉]) {initiality}
⇔ f = π1 ◦ ([T × U ; 〈τ ◦ F.π0, s(π0, π1)〉]) {fact below}

Writing φ := 〈τ ◦ F.π0, s(π0, π1)〉, we used the fact:

Id = π0 ◦ ([φ])
⇔ π0 ◦ ([φ]) ◦ τ = τ ◦ F.(π0 ◦ ([φ])) {theorem 4.1}
⇔ π0 ◦ φ ◦ F.([φ]) = τ ◦ F.(π0 ◦ ([φ])) {catamorphism}
⇔ τ ◦ F.π0 ◦ F.([φ]) = τ ◦ F.(π0 ◦ ([φ])) {definition φ}
⇔ True {F a functor}

⇐: Simple; given φ:F.U → U , apply (6.8) to sX(i, h) := φ ◦ F.h which is obviously
natural.

As with paramorphisms, the actual reduction rule that we get when f is defined as
π1 ◦ ([φ]) is not f ◦ τ => s(Id, f), but rather:

f ◦ τ => s(π0, π1) ◦ F.([φ]) .

A Mendler rule for dependent functions that uses an explicit inclusion function can
be given, but it appears to be too complicated to be practical:

U : TypeT ;
X: Type; i:X → T ; h: Π(x:X :: U(i.x)) ` sX(i, h): Π(y:F.X :: U(τ.(F.i.y)))
where s is natural
∃f : Π(T ;U) :: ∀y:F.T :: f(τ.y) = sT (I, f)y

(6.9)

It is probably not possible to derive rule (6.7) directly, because of the special role
of the inclusion relation. Rather, one would have to prove that any construction made
under an inclusion assumption X ⊆m T can be transformed into one using a function
i:X → T . We will not try to do so.

Parameter h in premise s in rules (6.7) and (6.8) gives access to the function value on
immediate predecessors x:X of the function argument τ.y. Either rule can be strength-
ened to allow access to the function value on non-immediate predecessors. For (6.7), this

6.4. RECURSORS FOR MUTUAL INDUCTION AND RECURSION 81

is done by adding a hypothesis X ⊆m F.X, for (6.8) by adding a parameter d:X → F.X.
Assuming that τ∪:T → F.T is available, the latter rule becomes:

U : C;
X: C; i:X → T ; d:X → F.X; h:X → U ` sX(i, d, h):F.X → U
where s is natural
∃!f :T → U :: f ◦ τ = sT (Id, τ∪, f)

(6.10)

To derive this rule, one has to instantiate X not to T ×U , but to some type that encodes
the function value on all predecessors of y:F.X. An initial (F ×KU)-algebra, say (V : C;
κ:F.V × U → V), would suit well, for then we can instantiate

i:V → T := ([π0 ◦̄ τ])
d:V → F.V := κ∪ ◦̄ π0

h:V → U := κ∪ ◦̄ π1

Further proof details are left to the reader.

6.4 Recursors for mutual induction and recursion

Considering mutual recursion, we have to distinguish between mutually recursive func-
tions on a single inductive type and recursive functions on a family of mutually inductive
types.

6.4.1 Mutual recursion on a single inductive type. Regarding the first kind of
mutual recursion, note that a tuple of functions on a single inductive type, e.g. f0:T →
B0, f1:T → B1, is equivalent to a single function with a cartesian product as codomain,
f :T → B0×B1. Therefore, in a calculus that has cartesian products (finite or infinite),
any recursion principle can be employed to construct mutually recursive functions.

6.4.2 Standard recursion on mutually inductive types. We modeled mutu-
ally inductive types (section 5.2) by several forms of initial algebras in an exponen-
tial category. All categorical recursion principles for initial algebras that we presented:
(6.1), (6.2), and (6.7), can be interpreted in these categories, yielding arrows f :T → U
in TYPEN . The recursors for dependent functions, (6.5) and (6.7), can easily be ac-
commodated in an exponential category too; for example, rule (6.5) becomes

Ui:N : TypeTn;
si:N (h:Fi.Σ(T ;U)):Ui(τi.(Fi.λfstN .h))
∃f : Π(N ; Π(T ;U)) :: ∀i:N ; y:Fi.T :: fi(τi.y) = si(Fi.(n′ :: z 7→ (z; fiz)).y)

where Σ en Π have to be lifted: Π(T ;U)i := Π(Ti;Ui).

82 CHAPTER 6. RECURSORS IN CONSTRUCTIVE TYPE THEORIES

6.4.3 Liberal mutual recursion. Standard recursion on a family of N inductive
types above requires that the recursive functions f consist of one function fi for each
type Ti. As an alternative recursion scheme, it is sometimes more convenient to index
the functions over some type M that is different from N , and use a mapping d(j:M):N
to indicate the domain of function fj . The defining equation for fj .(τdm.y) may assume
that, for every predecessor x:Ti of y, the function results fm′ .x for each m′:M with
dm′ = n are available. We name the type of this tuple of function results U |=n, so
U |= is the tuple of all these types. We dub the rule “liberal mutual recursion”, as the
function index type M is not fixed to be the index type N .

Theorem 6.5 (Liberal mutual recursion) For any endofunctor F on TYPEN , an
F -algebra (T : TYPEN ; τ :F.T → T) is initial iff rule (6.11) below holds for anyM : Type;
d:NM ; U : TypeM . We abbreviate:

U |= : TypeN := (n :: Π({j:M |: dm = n}; U));
Td: TypeM := (m :: T(dm))

Fd: TYPEM → TYPEM := S 7→ (m :: F(dm).S)

τd:Fd.Td → Td in TYPEM := (m :: τ(dm))
f :Td → U ; i:N ` f |=n:Ti → U |=n := x 7→ (m :: fj .x)

ψ:Fd.(T × U |=)→ U in TYPEM

∃!f :Td → U :: f ◦ τd = ψ ◦ Fd.〈Id, f |= 〉)
(6.11)

Proof. ⇒: We calculate the unique f that satisfies the specification, by translating it
into an equation in category TYPEN :

∀m :: fj ◦ τdm = ψj ◦ Fdm.〈Id, f |= 〉
⇔ ∀n; m; dm = n :: fj ◦ τi = ψj ◦ Fi.〈Id, f |= 〉 {introduce n = dm}
⇔ ∀n :: f |=n ◦ τi = ψ|=n ◦ Fi.〈Id, f |= 〉 {definition |=n}
⇔ f |= = [[ψ|=]] {(6.2)}
⇔ ∀m :: fj = x 7→ ([[ψ|=]]dm.x)j

⇐: This rule subsumes the paramorphism principle (6.2) with C := TYPEN , by
instantiating M := N , dm := m.

The rule of liberal mutual recursion made use of the equality type. However, in a
calculus without explicit equality, one might still allow restricted forms of this rule by
using syntactic checks for the equality dm = n, as the following example illustrates.

Example 6.5 Suppose we have a family of inductive types T : TypeIN×IN, and we wish
to simultaneously define two families of recursive functions,

gn:Tnn → IN
hnm:Tnm → Tmn

6.5. SUMMARY 83

This is possible by rule (6.11), taking

M := IN + IN2

d(0;n) := (n, n)
d(1;n,m) := (n,m)
U(0;n) := IN

U(1;n,m) := Tmn

After selecting a suitable ψ, the rule yields an f from which we can obtain gn := f(0;n)

and hnm := f(1;n,m). Using the currying convention of subsection 2.12.5, we can write
(g, h) = f . The characteristic equations become

gn ◦ τnn = ψ0n ◦ F0n.〈Id, (g, h)|= 〉
hnm ◦ τnm = ψ1nm ◦ F1nm.〈Id, (g, h)|= 〉

Inspection of the right-hand side of these equations reveals that the expressions which
define gn.(τnn.y) and hnm.(τnm.y) may contain reference to y, to hn′m′ .z for any imme-
diate predecessor z:Tn′m′ of τnm.y, and also to gn′ .z when it happens that m′ = n′. If
one allows the latter only when m′ and n′ are equal by definitional equality, no explicit
equality predicate is necessary.

6.5 Summary

This chapter completed our expedition of describing ordinary inductive types: chapter
2 introduced our language, chapter 4 our categorical machinery, chapter 5 surveyed
schemes for inductive type definitions, and this chapter finished with describing the
forms of recursion over an inductive type.

We described the following forms:

1. Catamorphisms (6.1), obtained directly from initiality.

2. Paramorphisms (6.2), which follow the scheme of simple or algebraic recursion.

3. Dependent (algebraic) recursion (6.5) and (6.6)

4. Mendler recursion (6.8), using a quantifiction over types. Any of the recursors 1–3
above can be formulated in Mendler form, giving six combinations.

5. Liberal mutual recursion (6.11). Any of the six combinations above can be gener-
alized to either standard or liberal mutual recursion, giving twelve forms of mutual
recursion.

Furthermore, any of these may appear either in a weak form, giving just a typing rule and
an equality (or reduction) rule, or in a strong form, giving also a uniqueness condition.
The latter is only possible when the calculus has an explicit equality predicate.

The strong forms of the recursors and the weak form of dependent recursion are all
equivalent (with respect to extensional equality), with these remarks:

84 CHAPTER 6. RECURSORS IN CONSTRUCTIVE TYPE THEORIES

• Equality types are required in order to formulate and derive the general form of
liberal mutual recursion.

• Equality types are also required to derive any strong recursor from weak dependent
recursion.

• Generalized sums are required to derive strong or weak dependent recursion.

“Equivalent” means here, that any application of one recursor can be translated into an
application of the other recursor that satisfies the same equation. However, the actual
reduction behavior may differ.

Similarly, the weak forms of the catamorphism, paramorphism, Mendler, and liberal
mutual recursion rules are equivalent, with the same remarks.

85

Chapter 7

Co-inductive types

We have noted in section 4.3 and 4.4 that the categories TYPEN have initial F -algebras
and initial (F ;E)-algebras. Quite remarkably, the same holds for the opposite categories
(TYPEN)op. Initial algebras in the opposite category are final co-algebras in the original
category, and may be called co-inductive types. While the elements of initial F -algebras
are like trees with finite branches only, elements of final F -coalgebras are like trees with
possibly infinitely deep branches. Final coalgebras are introduced in 7.1.

In 7.2 we have a look at the various shapes which the unique homomorphism to a
final coalgebra may take. We present the interesting example of infinite processes.

Section 7.3 shows how all recursion constructs that do not involve dependent func-
tions dualize.

While adding equations to an initial F -algebra has the effect of identifying some trees
(elements of the F -algebra), we prove in 7.4 that adding equations to a final F -coalgebra
has the effect of removing some trees from the algebra. Section 7.5 contrasts this with
the Algebraic Specification idea of final or terminal interpretation of equations over an
initial algebra.

7.1 Dualizing F -algebras

Let C be the category TYPEN for some type N . An F -algebra in Cop, say (X: Cop;
φ:F.X → X in Cop), is, by definition of op, a (Id, F)-algebra (X: C; φ:X → F.X in C),
which is also called an F -coalgebra. In section 8.2 we shall see that, if F is polynomial,
then there exists a final F -coalgebra, which we name νF . Thus, for any F -coalgebra
(X;φ) there is a unique homomorphism f : (X;φ)→ (U ; δ), with characteristic equation:

δ ◦ f = F.f ◦ φ . (7.1)

This homomorphism is noted ‘[(X;φ)]’, and called an anamorphisms, as devised by Erik
Meijer. Note that δ is an isomorphism by theorem 4.2, as (U ; δ) is initial in Cop.

Theorem 7.1 A final F -coalgebra (U ; δ) contains an initial F -algebra (V ; δ∪).

Proof. Take V :PU :=
⋂

(X |: δ∪ ∈ F.X → X). Then (V ; δ∪) is initial by theorem 4.3
(no junk and no confusion).

86 CHAPTER 7. CO-INDUCTIVE TYPES

Whereas, in TYPE, elements of initial algebras are thought of as well-founded trees,
final coalgebras do also contain all non-wellfounded trees, having infinitely deep branches.

Example 7.1 (Infinite lists) The algebra of streams or infinite lists (E∞; 〈hd, tl〉), as
specified in example 3.8, is the final (E×)-coalgebra.

To define the list e: IN∞ of all even numbers, we let f.n be the arithmetic sequence
〈n, n+ 2, . . .〉, using an equation of the shape (7.1).

〈hd, tl〉.(f.n) = (n, f.(n+ 2)) = ((IIN × f) ◦ 〈I, (+2)〉).n

So f := [(IN; 〈I, (+2)〉)]. Then we take e := f.0 .
Let us now define a bijection g:Eω ↔ E∞. We wish

g.e = f.0 where

δ.(f.n) = (en, f.(n+ 1))

where δ is 〈hd, tl〉, so we define

g.e := [(IN; (n 7→ (en, n+ 1)))].0 .

For the inverse, we define
g∪.l := (n :: hd.(tl(n).l)) .

We prove g ◦ g∪ = I:

g.(g∪.l) = l

⇔ f.0 = l where f := [(IN; (n 7→ ((g∪.l)n, n+ 1)))] {definition g}
⇐ f = (n 7→ tl(n).l) {generalization}
⇔ ∀n :: δ.(tl(n).l) = (I× (n 7→ tl(n).l)).((g∪.l)n, n+ 1) {anamorphism}
⇔ ∀n :: hd.(tl(n).l) = (g∪.l)n ∧ tl.(tl(n).l) = tl(n+1).l {pairing}
⇔ True

And g∪ ◦ g = I:

g∪.(g.e) = e

⇔ ∀n :: hd.(tl(n).(f.0)) = en where f := [(IN; (n 7→ (en, n+ 1)))]
⇐ ∀n,m :: hd.(tl(n).(f.m)) = en+m

⇐ ∀(m :: hd.(tl(0).(f.m)) = em+0)
∧ ∀(n,m :: hd.(tl(n+1).(f.m)) = hd.(tl(n).(f.(m+ 1))) {induction on n}

⇔ True {definition f}

7.1.1 Final F -algebras. Looking at final F -algebras in any category with final ob-
jects is not very interesting, for these are always that object (for TYPEN , the trivial
unit algebra, all carriers having exactly one element). Dually, initial F -coalgebras are
the initial object (for TYPEN , the empty algebra).

7.2. ANAMORPHISM SCHEMES 87

7.1.2 Dualizing plain algebras. In subsection 5.2.2 we gave an alternative scheme
for mutually inductive types, plain algebras. This scheme seems less suited for dualiza-
tion.

The operations were typed by:

τj:M : Π(k:Bj :: T(djk))→ T(cj) .

A dual algebra (U ; δ) would be typed by

δj:M :T(cj) → Σ(k:Bj :: T(djk)) ,

for Σ is the generalized product constructor in the category TYPEop. This is no longer
a plain algebra. It seems not to be very useful because neither operations δ nor δ∪ admit
multiple arguments, and each operation having alternative single result types that are
unrelated seems difficult to make sense of.

7.2 Anamorphism schemes

Equation (7.1) for an anamorphism f : (X;φ)→ (U ; δ) can take on a somewhat different
shape if it is combined with pattern matching, and furthermore if F happens to be the
sum of other functors.

First we eliminate δ on the left-hand side:

f = δ∪ ◦ F.f ◦ φ . (7.2)

Now, suppose that X can be split up over n patterns ξi(x′:X ′
i):X, so that:

∀x:X :: ∃!i:< n; x′:X ′
i :: x = ξix

′ .

Then (7.2) may be written as a list of equations

f ◦ λξi = δ∪ ◦ F.f ◦ φ′i (7.3)

where φ′i := φ ◦ λξi .
Next, if F is a finite sum, F.Y = Σ(j:< m :: F ′

j .Y), one has actually a list of
constructors

τj :F ′
j .U → U := δ∪ ◦ σj

or equivalently [τ] := δ∪. Then, if some φ′i has the shape σj ◦φ′′i , the respective equation
(7.3) reduces to

f ◦ λξi = τj ◦ F ′
j .f ◦ φ′′i . (7.4)

Example 7.2 (Processes) Co-inductive types offer elegant models for (indefinitely
proceeding) processes, viewing these as incremental stream transformers. For example,
the type of simple processes that can input data values from channels i: I and output

88 CHAPTER 7. CO-INDUCTIVE TYPES

data values over channels o:O, can make finitary nondeterministic choices and silent
steps, and can halt, is the final coalgebra (Sproc(I,O); δ) with Sproc(I,O): Type and

δ: Sproc(I,O)→ (I × (Data . Sproc(I,O))
+ O × Data×Sproc(I,O)
+ Σ(n: IN :: Sproc(I,O)n)
+ Sproc(I,O)
+ 1
)

[outp, inp, choose, step, halt] := δ∪

Here, inp.(i, s) represents a process that requires an input from channel i and contin-
ues with process si; outp.(o, c, s) outputs value c over channel o and continues with s;
choose.(n; s) chooses some arbitrary k:< n and continues with sk, and halt.0 represents
the process that just halts. step.s represents a process that performs some internal steps
without external action, and continues with s.

The choose alternative may be omitted if one represents a nondeterministic process
by a set of deterministic processes.

Now, consider the following program, written in CSP notation (Communicating Se-
quential Processes, Hoare [41]). It reads a number x from input channel A, and then
repeats x times reading a number y from A and outputting y2 to channel B.

A?x; ∗|[x > 0 −→ A?y; B!(y2); x := x− 1]| .

To give the process defined by this program, we first define X to be a suitable state
space. Between each input or output action there has to be a distinguished state.

X: Type := 1 + IN + IN2

The mapping of states to processes, f :X → Sproc(I,O), is then given by the following
equations of the form (7.4).

f.(0; 0) = inp.(A, (x :: f.(1;x)))
f.(1;x) = if x > 0 then inp.(A, (y :: f.(2;x, y))) else halt.0

f.(2;x, y) = outp.(B, y2, f.(1;x− 1))

The intended process is now f.(0; 0), as the initial state is (0; 0):X.
Processes that operate in an environment that may be changed by the process itself

can be modeled by final coalgebras in the category TYPEN , where type N is the set of
possible environment states. This makes it possible to let the range of possible actions
depend on the current environment state. (End of example)

Within a domain theory of partial and infinite objects (section 9.1), and hence in
programming languages with partial objects, processes can be represented as continuous
functions from lazy streams to lazy streams, which are also called stream transformers.
Dybjer and Sander [25] represented a system of concurrent processes using the stream

7.3. DUAL RECURSION 89

approach. One needs a “network transfer function” to combine the separate agents
into a single stream transformer. They used a functional calculus in which types are
basically predicates so that final coalgebras can be obtained as the greatest fixed points
of monotonic predicate transformers (as in section 10.2).

We refer to Malcolm [52] for some more examples and properties of final coalgebras,
called “terminal data structures” there.

7.3 Dual recursion

We have a look at how the derived non-dependent recursors of chapter 6 dualize. De-
pendent recursors are not dualizable, as the dual of a dependent function would have to
be something where the type of the argument depends on the function result, which is
impossible.

All the following dual recursors can be transformed into a pattern-matching scheme
like 7.4.

7.3.1 Algebraic recursion. As the scheme of algebraic recursion in section 6.1
works for any category with products, and products in category Cop are sums in C, we
have the following corollary.

Corollary 7.2 If (T ; δ) is a final F -coalgebra in a category C with binary sums, then

U : C
ψ:U → F.(T + U)
∃!f :U → T :: δ ◦ f = F.[Id, f] ◦ ψ

(7.5)

Example 7.3 Let (T ; δ) := ν(X 7→ E×X2) be the coalgebra of non-wellfounded labeled
binary trees. Given a label e:E and a tree t:T , we can construct a tree s with

δ.s = (e, s, t)

by taking s := f.0 where f : 1→ T is, using (7.5), the unique solution to:

δ ◦ f = (IE × [IT , f]2) ◦ K(e, ((1; 0), (0; t))) .

So we apply (7.5) to ψ := K(e, ((1; 0), (0; t))).

7.3.2 Mendler recursion. Mendler’s recursor dualizes too (only for non-dependent
functions of course) to:

U : Type;
X: Type; i:T → X; h:U → X ` sX(i, h):U → F.X
where s is natural
∃!f :U → T :: δ ◦ f = sT (I, f)

(7.6)

Example 7.4 The same s:T as in example 7.3 is obtained by taking for f : 1 → T the
unique solution to:

δ ◦ f = K(e, f.0, I.t) .

So we apply (7.6) to sX(i, h) := K(e, h.0, i.t) . Check that this is well-typed.

90 CHAPTER 7. CO-INDUCTIVE TYPES

7.3.3 Liberal mutual recursion. Rule (6.11) dualizes trivially, yielding an f :U →
Td in TYPEM that satisfies δd ◦ f = Fd.[Id, f=] ◦ ψ.

7.4 Dual equations

We shall now look at the effect of adding equations to a final coalgebra, by applying the
categorical notion of an algebra with equations, as described in paragraph 4.4.3, to the
dual category Cop where C := TYPEN . This is not to be confused with the terminal
interpretation of equations in algebraic specification, described in section 7.5.

A law E in the category Cop is a functor H: C → C with two natural transformations
Ej :U

.→ HU , where U is the forgetful functor (X;φ) 7→ X. An F -coalgebra (X;φ)
satisfies law E when E0(X;φ) =X→H.X E1(X;φ), that is, when for all i:N ; x:Xi,

E0(X;φ)i.x =Hi.X E1(X;φ)i.x . (7.7)

Now, we prove that a final algebra with equations is obtained from a final algebra without
equations by removing all elements that do not satisfy the equations and the elements
that contain these elements.

Theorem 7.3 If, for a functor F : C → C and law E, there exists a final F -coalgebra
(T ; δ), then the final (F ;E)-coalgebra exists as well and is the greatest subalgebra of
(T ; δ) that satisfies law E, namely coalgebra (T ′; δ) where:

T ′ :=
⋃

(X:⊆ T |: ∀i:N ; x:∈ Xi :: δi.x ∈ Fi.X ∧ (7.7))

where the union and subset on tuples should be taken pointwise, and the functor is
extended to subsets (par. 4.1.7).

Proof. We consider only the case N = 1, so we can forget about the subscripts i.
(T ′; δ) is clearly an (F ;E)-coalgebra. Let Ψ be another one; we must exhibit a unique
homomorphism Ψ→ (T ′; δ) in ALG(F ;E).
We have a unique F -homomorphism f : Ψ → (T ; δ), because (T ; δ) is final. As E is a
natural transformation and Ψ satisfies E, the range f [Ψ] satisfies E too. So f ∈ Ψ →
(T ′; δ). As any other homomorphism to (T ′; δ) is a homomorphism to (T ; δ) as well, it
must equal f .

Actually, no really useful example of a final (F ;E)-coalgebra is known to me.

7.5 Terminal interpretation of equations

In the tradition of “algebraic specification” [87], which we sketched in 4.7, one distin-
guishes between the initial and terminal interpretation of an algebraic specification. A
specification consists of an algebra signature Σ together with a set of equations and
sometimes inequations (6=). Normally, only finitary signatures are allowed.

The initial interpretation of a specification is just the initial object in the category
of all Σ-algebras that satisfy the equations. This corresponds to our notion of initial
algebra with equations. Any inequations are superfluous: if they are not satisfied in this
initial algebra, the specification is inconsistent.

7.6. CONCLUSION 91

The terminal interpretation of a specification is different, though. This is the final
object in the category of all “term-generated” Σ-algebras that satisfy both the equations
and inequations. An algebra Φ is term-generated iff the unique homomorphism from the
initial Σ-algebra to Φ is surjective. Put otherwise, the terminal interpretation is the ini-
tial Σ-algebra modulo the greatest equivalence relation that satisfies the (in-)equations,
when this exists. Thus, these terminal algebras are definitely not co-inductive types.

Presence of inequations is essential here; otherwise the terminal interpretation would
trivially be the unit algebra. Normally, an algebraic specification includes some stan-
dard specification of one or more types whose elements are required to be distinct, like
booleans, characters, or integers.

7.6 Conclusion

We described the dualization of inductive types, which are types with infinitely deep ob-
jects, for example indefinitely proceeding processes. The rigid form of recursive equation,
needed to construct objects of these types, could be transformed into a more natural
definition scheme.

The notion of algebra with equations can be dualized too, and is meaningful in the
category of types, but this dual form of equation does not seem to be very useful.

Co-inductive types are not to be confused with the terminal interpretation of an
algebraic specification.

92

Chapter 8

Existence of inductively defined
sets

We characterized inductive types in chapter 5 by means of polynomial functors; now we
shall show that for a polynomial functor F , in set theory, an initial F -algebra and a final
F -coalgebra indeed exist. The axioms of set theory are listed in section A.1. We outline
two alternative proofs. Manes [54, p. 74] lists a number of works that present a rigorous
construction of (an equivalent of) initial F -algebras for polynomial functors F .

The first proof, in section 8.1, is the standard construction of an initial F -algebra,
by taking the transfinite limit F (u).∅ for some ordinal number u.

Section 8.2 gives a more elementary proof, after an idea of Kerkhoff [45], which works
in type theory too, and which dualizes yielding final co-algebras.

In section 8.3, we add equations to an initial F -algebra. For adding equations to a
final F -coalgebra, we refer to section 7.4.

8.1 Using transfinite ordinal induction

Given a polynomial F , we are going to define a transfinite sequence of sets so that its
limit gives an initial F -algebra.

For κ (kappa) a cardinal number, we define

Y ⊆κ X := Y ⊆ X ∧ cardY ≤ κ .

A functor F : SET→ SET is bounded iff it has some rank. It has rank κ (or is κ-based)
iff for all X: Set,

F.X =
⋃

(Y :⊆κ X :: F.Y) .

Note that bounded functors are monotonic: they preserve (⊆).

Theorem 8.1 1. Any polynomial functor F is bounded.

2. For any bounded functor F there exists an initial F -algebra (T ; τ). Actually, τ
can be the identity, so that F.T = T .

8.1. USING TRANSFINITE ORDINAL INDUCTION 93

Proof 1. Let F.X = Σ(x:A :: XBx). We calculate a rank κ of F .

Σ(x:A :: XBx) ⊆
⋃

(Y :⊆κ X :: Σ(x:A :: Y Bx))
⇔ Σ(x:A :: XBx) ⊆ Σ(x:A ::

⋃
(Y :⊆κ X :: Y Bx))

⇐ ∀x:A :: XBx ⊆
⋃

(Y :⊆κ X :: Y Bx)
⇔ ∀x:A; u:XBx :: ∃Y :⊆κ X :: u ∈ Y Bx

⇐ ∀x:A; u:XBx; Y := {i:Bx :: ui} :: Y ⊆κ X ∧ u ∈ Y Bx

⇔ ∀x:A; u:XBx :: card{i:Bx :: ui} ≤ κ ∧ True

⇐ κ = max(x:A :: cardBx)

2. Let the rank of F be κ. For some ordinal u, we define a transfinite sequence of sets
T : Setsu by ordinal recursion:

T0 := ∅
Tsn := F.Tn

Tv :=
⋃

(w:< v :: Tw) for limit ordinals v

Now, Tu is the limit of the whole sequence, and if it satisfies F.Tu ⊆ Tu then (Tu; I) is
an F -algebra. So we try:

F.Tu ⊆ Tu

⇔
⋃

(Y :⊆κ Tu :: F.Y) ⊆ Tu

⇔ ∀(Y :⊆κ Tu :: F.Y ⊆ Tu)

To prove this condition, assume Y :⊆κ Tu. Requiring that u is a limit ordinal (require-
ment 1), we have that for all y:∈ Y there is some vy < u with y ∈ Tvy . Hence Y ⊆ Tmax v,
and:

F.Y ⊆ F.Tmax v = Ts(max v) . (8.1)

Now note that if κ < u (2) then:

card(Dom v) = cardY ≤ κ < u .

So if u is a regular cardinal (3) (see section A.4), then:

max v ≤
∑

v < u ,

hence s(max v) < u as u is a limit. Combined with (8.1) and monotony of T , we obtain
our present goal, F.Y ⊆ Tu.

So we are done if we find a u that is a limit ordinal (requirement 1), that is bigger
than κ (2), and that is a regular cardinal (3). Taking u := max〈κ+, ω〉 satisfies all this.
(κ+ is the least regular cardinal greater than κ, see section A.4.)

This proof does not dualize to final coalgebras, because T0 would then have to be a
set of all sets, which does not exist. Indeed, final coalgebras of the form (U ; I) generally
do not exist in ZFC. But within Aczel’s set theory with anti-foundation (section A.7),
it is possible to build such algebras; see [4].

94 CHAPTER 8. EXISTENCE OF INDUCTIVELY DEFINED SETS

8.2 Kerkhoff’s proof

An alternative construction is the following one, somewhat simplified from Kerkhoff [45].
It needs no ordinal recursion but only natural numbers and powersets. Furthermore, it
can be dualized to model co-inductive types, and it can be formalized within our extended
type theory as well.

We want to construct an initial algebra (T : Set; τ : Σ(x:A :: TBx) → T). Elements
of T are built from some a:A and a tuple s:TBa of sub-elements, so we think of them
as trees, where each node has a label x:A and a tuple of subtrees indexed over Bx. The
idea is to represent such a tree by its set of nodes, where each node is characterized by
its label together with the sequence of indices from

⋃
(x:A :: Bx) that leads to the node.

Theorem 8.2 (Kerkhoff) For polynomial F , there exists an initial F -algebra.

Proof. As in paragraph 2.9.2, let X∗ := Σ(n: IN :: Xn) be the type of finite sequences,
so that 〈〉:X∗, and 〈x〉++ l :X∗ for x:X, l:X∗. We’ll define S to be the type of arbitrary
sets of node representations, τ to be the operator that combines a tuple of such sets into
a new one with a single root node, so that (S; τ) is an F -algebra, and then define T to
be the subalgebra of S generated by τ .

Let F.X = Σ(x:A :: XBx).

S := P(
⋃

(A;B)∗ ×A)
τ.(a:A; s:SBa):S := { (〈〉, a) } ∪ {y:Ba; (l, x):∈ sy :: (〈y〉++ l, x) }

T :=
⋂

(X:⊆ S |: τ [F.X] ⊆ X)

Now, theorem 4.3 says that (T ; τ) is initial, provided that τ is injective. To prove this,
assume:

τ.(a; s) = τ.(a′; s′)

First, as we have (〈〉, a) ∈ τ.(a; s), and as it is not possible that (〈〉, a) = (〈y′〉 ++ l′, x′)
for some y′:Ba; (l′, x′):∈ s′y′ , it follows that (〈〉, a) = (〈〉, a′) so a = a′.

Secondly, we prove sy ⊆ s′y for arbitrary y:Ba.

(l, x) ∈ sy

⇒ (〈y〉++ l, x) ∈ τ.(a; s) {def. τ}
⇔ (〈y〉++ l, x) ∈ τ.(a; s′) {assumption}
⇔ ∃y′:Ba; (l′;x′):∈ s′y′ :: (〈y〉++ l, x) = (〈y′〉++ l′, x′) {def. τ}
⇔ ∃y′:Ba; (l′;x′):∈ s′y′ :: y = y′ ∧ l = l′ ∧ x = x′

⇔ (l, x) ∈ s′y

By symmetry we have s′y ⊆ sy, so that s = s′.

The difference with Kerkhoff is that he constructed the “free” F -algebra over a set C,
which is the initial (F + KC)-algebra; he had

S := P((C ∪A ∪
⋃

(A;B))∗)

8.2. KERKHOFF’S PROOF 95

τ.(a; s) := { 〈a〉 } ∪ {y:Ba; l:∈ sy :: 〈a, y〉++ l }
η.c := { 〈c〉 }
T :=

⋂
(X:⊆ S |: τ [F.X] ∪ η[C] ⊆ X)

A dual construction (dual with respect to set inclusion) yields an F -coalgebra (U ; δ).
The proof that this coalgebra is final is very different, though.

Theorem 8.3 For polynomial F , there exists a final F -coalgebra.

Proof. Let S and τ be as above. Then define:

U :=
⋃

(X:⊆ S |: X ⊆ τ [F.X])

δ.(t:U) := (a; s) where (〈〉, a) ∈ t ,
sy := { (l, x) |: (〈y〉++ l, x) ∈ t} .

Note that δ:U → F.U is the inverse of τ (on U , not on S). This gives an F -coalgebra
(U ; δ); we’ll prove that it is final. Let (V ; γ) be another F -coalgebra; we have to construct
a unique homomorphism f : (V ; γ)→ (U ; δ), so that δ ◦ f = F.f ◦ γ, or:

∀v:V :: f.v = τ.(F.f.(γ.v)) (8.2)

An inductive definition of f would yield only a partial function. Rather, we define
the collection of subsets f.v:S for v:V by simultaneous induction as the least tuple of
sets such that

∀v:V :: τ.(F.f.(γ.v)) ⊆ f.v .

That is, for v:V and (a;w) := γ.v :

(〈〉, a) ∈ f.v
y:Ba; (l, x):S ` (l, x) ∈ f.wy ⇒ (〈y〉++ l, x) ∈ f.v

This has the form of a fixed point equation on the lattice (S;⊆)V , so by Knaster-Tarski
(theorem 3.6) we have indeed f :V → S and (8.2).

We first check the type of f :

f ∈ V → U

⇔ f [V] ⊆ U
⇐ f [V] ⊆ τ [F.f [V]] {definition U}
⇐ (F.f ◦ γ)[V] ⊆ F.f [V] {f = τ ◦ F.f ◦ γ}
⇔ F.f ◦ γ ∈ V → F.f [V]
⇐ F.f ∈ F.V → F.f [V] {γ:V → F.V }
⇐ f ∈ V → f [V]
⇔ True

Thus, f is a homomorphism indeed. For uniqueness, suppose g is a homomorphism
too. As τ.(F.g.(γ.v)) = g.v and f is minimal, we have f.v ⊆ g.v . But then f.v = g.v,
because of the following lemma, and we are done.

96 CHAPTER 8. EXISTENCE OF INDUCTIVELY DEFINED SETS

Lemma. If u, u′ ∈ U and u ⊆ u′, then u = u′.
We prove for l:

⋃
(A;B)∗, x:A the following, by induction on the length of the finite

sequence l:
∀u, u′:U ; u ⊆ u′ :: (l, x) ∈ u′ ⇒ (l, x) ∈ u (8.3)

First we note that for any u, u′, by definition of U we have u = τ.(a; s) and u′ = τ.(a′; s′)
for certain a, a′:A, s:UBa, s′:UBa′ . Given u ⊆ u′ and the definition of τ , it follows then
that a = a′ and sy ⊆ s′y for all y:Ba.

We check (8.3) for the empty list: if (〈〉, x) ∈ u′, then we have x = a′ = a so
(〈〉, x) ∈ u.

Then, assume (8.3) as induction hypothesis. If (〈y〉 ++ l, x) ∈ u′, then we have
(l, x) ∈ s′y, so by hypothesis (l, x) ∈ sy, hence (〈y〉 ++ l, x) ∈ u. This completes the
induction, the lemma, and the theorem.

8.3 Algebras with equations

In section 4.4, we introduced equations or laws. We show now that one can always
add laws to an initial F -algebra in TYPE (and also in SET), when quotient-types are
available. The dual theorem, that one can always add laws to a final coalgebra, was
already shown in section 7.4 .

Theorem 8.4 For any polynomial endofunctor F on TYPE, and law E = (H; r), if
ALGF has an initial object, then ALG(F ;E) has one as well.

Proof. Let F.X = Σ(x:A :: XBx), and (T ; τ) be initial in ALGF . We define a con-
gruence relation R:P(T 2) as follows. It is inductively defined by the clauses:

h:H.T ` r(T ; τ).h ∈ R (8.4)
a:A; t, t′:TBa ` ∀y:Ba :: (ty, t′y) ∈ R ⇒ (τ.(a; t), τ.(a; t′)) ∈ R (8.5)

|=T | ⊆ R

R∪ ⊆ R

R ·R ⊆ R

The first two clauses may be written as r(T ; τ) ∈ H.T → R and (τ, τ) ∈ F.R→ R.
Using the quotient types of C.4.2, we take T ′ to be T modulo this congruence, and

we define τ ′ so that // inR: (T . T//R) is a homomorphism, λ// inR: (T ; τ)→ (T ′; τ ′):

T ′ := T//R

τ ′ := {a:A; t:TBa :: ((a; (y :: // inR ty)), // inR(τ.(a; t))) }

First we have to show that this τ ′ is really a function. So assume a:A, t, t′:TBa,
and // inR ty = // inR t

′
y for y:Ba. As R is an equivalence relation, we have (ty, t′y) ∈ R

for all y, hence (τ.(a; t), τ.(a; t′)) ∈ R by the last clause of R, and // inR(τ.(a; t)) =
// inR(τ.(a; t′)).

Secondly, F -algebra (T ′; τ ′) should satisfy law E, that is, r0(T ′; τ ′) =H.T ′→T ′ r1(T ′; τ ′).
As the rj :HU

.→ U are natural transformations, and as λ// inR is a homomorphism, we
have

λ// inR ◦ rj(T ; τ) = rj(T ′; τ ′) ◦H.(λ// inR) .

8.3. ALGEBRAS WITH EQUATIONS 97

But by the first clause of R, we have

λ// inR ◦ r0(T ; τ) = λ// inR ◦ r1(T ′; τ ′) ,

so we are done if H.(λ// inR) is surjective, that is, has a right-inverse. Now note that
λ// inR must have a right-inverse g by the axiom of choice, and then H.g is a right-inverse
of H.(λ// inR) .

Thirdly, supposing that (U ;ψ) is another (F ;E)-algebra, we must provide a unique
homomorphism f : (T ′; τ ′)→ (U ;ψ). For a function f :T ′ → U we have:

f is a homomorphism
⇔ f ◦ τ ′ = ψ ◦ F.f
⇔ f ◦ τ ′ ◦ F.(λ // in) = ψ ◦ F.f ◦ F.(λ // in) {λ // in is surjective}
⇔ f ◦ λ // in ◦ τ = ψ ◦ F.(f ◦ λ // in) {def. τ ′}
⇔ f ◦ λ // in = ([U ;ψ]) {initiality (T ; τ) }

So we can take
f := λ // elim ([U ;ψ]). ,

where we must prove that for (x, x′):∈ R, one has ([ψ]).x = ([ψ]).x′ . For this we need
the minimality of R. So defining

S := { (x, x′):T 2 |: ([ψ]).x = ([ψ]).x′} ,

we prove that R ⊆ S by checking that S satisfies the five clauses that define R. Relation
S is clearly reflexive, symmetric, and transitive. To check (8.4), we have for h:H.T

([ψ]).(r0(T ; τ).h) = ([ψ]).(r1(T ; τ).h)

because ([ψ]) ◦ rj(T ; τ) = rj(U ;ψ) ◦H.([ψ]) by naturality of rj , and r0(U ;ψ) = r1(U ;ψ)
as (U ;ψ) satisfies law E.
To check (8.5), when (ty, t′y) ∈ S for y:Ba, then we have (τ.(a; t), τ.(a; t′)) ∈ S because
([ψ]) is a homomorphism, i.e. ([ψ]).(τ.(a; t)) = ψ.(a; (y :: ([ψ]).ty)) .

98

Chapter 9

Partiality

Up till now, all objects were fully defined. Functional programming languages that
employ so-called lazy (non-strict) evaluation require quite different recursive types. In
these languages objects can be defined, some parts of which are undefined. “Undefined”
means here that the part is given by a program whose computation proceeds indefinitely,
without producing any output. (Note that a non-terminating program may still produce
fully defined infinite objects.)

Classically, such types are modeled by adding a special value ⊥ to represent an
undefined (sub-)value. A recursive type T with one constructor τ :F.T → T may then
be represented by an initial algebra (T : Type; [τ,K⊥]:F.T + 1 → T). Constructively,
this does not work, as it is in general undecidable whether a program will produce
anything or not. We shall give an alternative representation in 9.3.

First, in section 9.1, we give a brief overview of the standard theory of complete
partial orders (cpo’s). This theory can be used to interpret recursive object definitions,
classically as well as constructively.

In 9.2, we treat the simplified case of optional objects, which are either undefined or
fully defined. These may be used to model partial functions or procedures in a language
without lazy evaluation.

In 9.3, we give a new constructive representation of the cpo of recursive types with
lazy parts, using final coalgebras in the category of strict types.

Finally, section 9.4 shows how recursive object definitions can be interpreted in this
representation without using the cpo structure.

9.1 Domain theory

There are many constructions of categories of domains that model recursive data types,
see e.g. Scott [77]. Smyth and Plotkin set up [79] a categorical framework that generalizes
the construction of recursive domains in most categories occurring in computational
semantics.

One of these categories is the category of complete partial orders (cpo’s). We define
this category, and give three fixed-point theorems: 9.1 shows how to interpret recursive
object definitions, 9.3 shows how to interpret recursive type definitions, and theorem 9.4
shows how to prove properties of recursively defined objects.

9.1. DOMAIN THEORY 99

We define first the category of partial orders, then ω-chains over a partial order, then
the category of cpo’s. The object and arrow parts of these categories are given by means
of structure definitions (paragraph 2.6.3); but the arrow part might in fact be obtained
from the definition of the object part by means of a straightforward procedure.

Define PoSet: Cat by
X: PoSet :=: (X: TYPE;

(≤):⊆ X2;
(≤) · (≤) ⊆ (≤);
(≤) ∩ (≤)∪ = (=X)
)

f :X → Y in PoSet :=: (f :X → Y in TYPE;
(f, f) ∈ (≤)→ (≤)
);

ω chain(X: PoSet) := { s:Xω |: ∀i:ω :: si ≤ si+1}

Define CPO: Cat by
D: CPO :=: ((D; (vD)): PoSet;

⊥D:D; ∀(x:D :: ⊥ v x);
s:ω chainD `

⊔
s:D; ∀x:D :: (

⊔
s v x ⇔ ∀i:ω :: si v x)

);
f :D → E in CPO :=: (f :D → E in PoSet;

f.⊥D = ⊥E ;
s:ω chainD ` f.

⊔
s =

⊔
(fω.s)

)

Relation ‘x v y’ may be understood as ‘Partial object x is an approximation of y’, and
⊥ is the undefined object, which approximates everything.

A continuous function f :D →c E between two cpo’s is a function that is monotonic
with respect to v and that preserves limits of ω-chains. Note that arrows f :D → E
in CPO are continuous functions that preserve ⊥ too.

Theorem 9.1 (fixed points in a cpo) Any equation x = f.x where f :D →c D, has
a least solution in D, called fix f . That is, one has

f.(fix f) = fix f

f.x v x ⇒ fix f v x

Proof. Take s0 := ⊥, si+1 := f.si. By induction one has ∀i:ω :: si v si+1, so we can
define fix f :=

⊔
s. Then

f.(
⊔
s) =

⊔
(i :: f.si) =

⊔
(i :: si+1) =

⊔
(i :: si) ,

and if f.x v x, then by a simple induction ∀i:ω :: si v x, so
⊔
s v x.

Category CPO is closed under products, sums, continuous function space, and taking
fixed points (modulo isomorphism) of suitable endofunctors, by Scott’s inverse limit
(colimit) construction, as follows.

100 CHAPTER 9. PARTIALITY

A cochain in any category C with ω-products is an ω-tuple, T : Cω, with arrows
φi:Ti+1 → Ti. A cocone is a structure (T ;φ;S;ψ) where (T ;φ) is a cochain, S an object,
and where arrows ψi:ω:S → Ti commute with φi:

ψi = ψi+1 ◦̄ φi .

Given a cocone (T ;φ;S;ψ), we call (S;ψ) a colimit of (T ;φ) iff for any cocone (T ;φ;S′;ψ′)
there is a unique homomorphism (S′;ψ′)→ (S;ψ).

Theorem 9.2 Every cochain (T ;φ)) has a colimit.

Proof. Take
S := { t: Π(ω;T) |: ∀i:ω :: ti = φi.ti+1} ,

then (T ;φ;S;π) is a cocone, and for any cocone (T ;φ;S′;ψ′) one has 〈ψ′〉: (S′;ψ′) →
(S;π).
Assuming χ: (S′;ψ′)→ (S;π) too, one has 〈ψ′〉 = χ because ψ′i = χ ◦̄ πi.

Theorem 9.3 (fixed points in CPO) (Scott) Any functor F : CPO → CPO that
preserves colimits of cochains has a unique fixed point (modulo isomorphism) µF ,
F (µF) ∼= µF , yielding both an initial F -algebra and a final F -coalgebra.

Proof. (sketch) Given functor F , we define a cochain (T ;φ) by:

T0 := {⊥}
Ti+1 := F.Ti

φ0 := x 7→ ⊥
φi+1 := F.φi

Let (S;ψ) be its colimit, take µF := S. Now we define a constructor:

τ :F.(µF)→ µF := x 7→ (0 :: ⊥ | i+ 1 :: F.ψi.x)

To construct τ∪, note that (F.µF ;Fω.ψ) is a colimit of

(Fω.T ;Fω.φ) = ((i :: F.Ti); (i :: F.φi)) = ((i :: Ti+1); (i :: φi+1)) .

But as ((i :: Ti+1); (i :: φi+1); µF ; (i :: ψi+1)) is a cocone as well, there must be a unique
homomorphism

τ∪: (µF ; (i :: ψi+1))→ (F.µF ; (i :: F.ψi)) .

The unique homomorphisms required for initiality and finality are (see also Paterson
[67], where they are called reduceF φ and generateF ψ)

fix(g 7→ τ∪ ◦̄ F.g ◦̄ φ) : (µF ; τ)→ (X;φ)

and
fix(g 7→ ψ ◦̄ F.g ◦̄ τ) : (X;ψ)→ (µF ; τ∪) .

(end of proof sketch)

9.2. OPTIONAL OBJECTS 101

Theorem 9.4 (fixed point induction)

f :D →c D
P (x:D): Prop
s:ω chainD ` ∀(i:ω :: P (si))⇒ P (

⊔
s)

P (⊥)
∀(x:D :: P (x)⇒ P (f.x))
P (fix f)

Proof. Take s0 := ⊥, si+1 := f.si as in theorem 9.1, then one has ∀i:ω :: P (si) and
fix f =

⊔
s, so P (fix f).

One of the first computer verification systems was LCF [35, 70], Logic of Computable
Functions. It has fixed point induction as a primitive rule, using a syntactic check for
chain-completeness.

9.2 Optional objects

We wish to lift a type A to a type ↑A with A ⊆t ↑A and a special value ⊥: ↑A, called
“undefined”. (Such a type ↑A is often named ‘A⊥’, but we do not want to use subscripts
for this.) Partial functions from A to B may then be represented by total functions from
A to ↑B.

The postfix predicate x↓ means ‘x is defined’, and ↑A is partially ordered, as follows:

x: ↑A ` x↓: Prop := ∃a:A :: x =↑A a

x, y: ↑A ` x v y := (x↓ ⇒ x = y) ,

and this gives a cpo (classically), for

s:ω chain ↑A `
⊔
s :=

{
si if si↓, for some i
⊥ if ∀i :: si = ⊥ .

So (↑B)A is a cpo too, and any continuous function e: (↑B)A →c (↑B)A must have a
unique least fixed point f = e.f . This gives us the possibility of recursive definition of
partial functions.

There are several ways to define such a type ↑A within our calculus:

9.2.1 Explicit options. Classically, the idea is to simply add a singleton type to A,
using a sum:

OptA := A+ 1 ,
⊥ := σ1.0

σ0 : A ⊆t OptA .

Constructively, this does not give a cpo. For, to construct a value of type OptA one
must effectively decide whether it has to be ⊥ or some a:A. But the limit of an ω-chain
s should be ⊥ if and only if all si equal ⊥, and this cannot be effectively decided.

102 CHAPTER 9. PARTIALITY

Similarly, a mapping e: (OptB)A → (OptB)A that is monotonic (which means that
a more defined argument gives a more defined result) can classically be shown to have a
unique least fixed point f = e.f , but this fixed point is not constructively definable, in
general. For, given an argument a, it cannot be effectively decided whether computation
of fa will terminate.

9.2.2 Propositional options. An alternative is to think of an optional object as
a proposition that tells whether the object is defined or not, together with the actual
value in case the proposition is true. Thus, one can only access the value if one has a
proof of the proposition.

↑A := Σ(D: Prop :: AD)
⊥ := (False; ())

x 7→ (True; (() :: x)) : A ⊆t ↑A

This ↑A gives (using strong existential quantifier elimination) a constructive cpo, for we
can define: ⊔

(s:ω chain ↑A) := (∃(i:ω :: fst si); ∃ elim((i; d) :: snd(sid)))

(Check that for (i; d), (i′; d′): Σ(i:ω :: fst si), one has that snd(sid) = snd(si′d
′).) So

continuous mappings e: (↑B)A →c (↑B)A have (constructible) fixed points.
This construction is not possible in Nuprl [18], for its type theory does not have

strong ∃ elim. However, Nuprl has recursive definition of partial functions as a primitive
rule. It employs a (restrictive) syntactic test for continuity of recursive definitions.

9.2.3 Lazy options. If one has co-inductive types, there is another alternative.
Given a type A, we define a co-inductive type T that represents computations of objects
of A. It has constructors η:A→ T and ζ:T → T , so that a nonterminating computation
can be represented by ζ.(ζ.(. . .)), repeating ζ indefinitely. Type ↑A is then the quotient
type (section C.4.2) of T modulo the relation given by ζ, so that ζ.x and x are identified.

(T ; δ) := ν(KA+ Id),
[η, ζ] := δ∪;
⊥:T := ζ.⊥
↑A := T//ζ

⊥: ↑A := // in(⊥:T)
(x 7→ // in(η.x)) : A ⊆t ↑A

Note that ζ induces an equivalence ≡ζ on T , and that T is partially ordered by:

(x:T)↓ := ∃a:A :: x ≡ζ η.a

x v y := (x↓ ⇒ x ≡ζ y) .

To get a constructive definition of
⊔

(s:ω chain(↑A)), we have to do a simultaneous
quotient elimination on all si: ↑A. This is possible by a construction similar to the one
in C.4.5. It then suffices to construct

⊔
(t:ω chainT):T .

9.3. BUILDING RECURSIVE CPO’S BY CO-INDUCTION 103

Note that if there are some i, k:ω and a:A such that ti = ζ(k).(η.a), then for any j,
one necessarily has ti+j ≡ζ η.a, and we should have

⊔
t ≡ζ η.a.

Now, one cannot effectively decide whether such i and k exist. Rather, we define an
anamorphism f : (IN, φ) → (T ; δ) such that f.n tries only i and k up to bound n, and
yields ζ.(f.(n + 1)) if that does not succeed. So, making improper use of if , we define
informally:

f.n := if ti = ζ(k).(η.a) for some i, k:≤ n, a:A then η.a else ζ.(f.(n+ 1)) .

The proper definition requires two local recursions over IN, and is left to the reader.
Finally we define

⊔
t := f.0 .

9.3 Building recursive cpo’s by co-induction

We now generalize the construction in paragraph 9.2.3 of types with lazy optional objects
to recursive type definitions. That is, we build a solution to the domain equation T ∼=
↑(F.T), where F is polynomial, using co-induction.

The value ⊥ should represent an object that takes infinite time to compute. If we
add a constructor ζ:T → T (zeta) to represent a value that takes one step more than
its argument, then ⊥ can be represented by an infinite sequence of ζ’s.

(T ; δ) := ν(F + Id)
[τ, ζ] := δ∪

⊥:T := ζ.⊥

Actually, T should be taken modulo a congruence ' that identifies any ζ.x with x.
To obtain this congruence, we first define the approximation relation (v):⊆ T 2 as the
greatest relation such that, for all x:F.T ; y:T :

∃(n: IN :: ζ(n).(τ.x) v y) ⇒ ∃(m: IN; z:F.T :: y = ζ(m).(τ.z) ∧ x F.(v) z) .

Put in relational calculus:

τ · ζ(∗) · (v) ⊆ F.(v) · τ · ζ(∗) . (9.1)

Here, F.(v):⊆ (F.T)2 stands for F lifted to relations as in section D.3, applied to (v),
and ζ(∗) is the reflexive, transitive closure of ζ, i.e.

ζ(∗) =
⋃

(n: IN :: ζ(n)) =
⋂

(Q:PT 2 |: ζ ∪ (=) ∪Q ·Q ⊆ Q) .

Note that ⊥ v x, for any x:T . Then we define (') := (v) ∩ (v)∪.

Theorem 9.5 1. Relation v is a preorder.

2. When we extend v to T//ζ, then (T//ζ; (v),⊥) is an ω-complete partial order, at
least if F is a polynomial, F.X = Σ(a:A :: XBa).

104 CHAPTER 9. PARTIALITY

Proof 1. Relation v is reflexive, for (=T) satisfies (9.1) so (=) ⊆ (v). And v is
transitive, i.e. (v) · (v) ⊆ (v), follows again from v being maximal, for

τ · ζ(∗) · ((v) · (v))
⊆ F.(v) · τ · ζ(∗) · (v) { (9.1) }
⊆ F.(v) · F.(v) · τ · ζ(∗) { (9.1) }
= F.((v) · (v)) · τ · ζ(∗)

2. By definition of ', preorder v gives a partial order on T//(').
Proving that ω-chains over v have limits is rather complicated. Let s:Tω be a chain,

si v si+1, we have to define
⊔
s:T . We follow the method of paragraph 9.2.3.

The idea is that, if there are some i, k0:ω and u0:F.T such that si = ζ(k0).(τ.u0),
then all si+j must necessarily equal ζ(kj).(τ.uj) for certain kj and uj , and uj F.(v) uj+1

(exercise). Hence all uj equal (a; vj) for a fixed a and vj :TBa, and vjy v vj+1y for y:Ba.
So (j :: vjy) are chains again, and

⊔
s should equal, for some n,

ζ(n).(τ.(a; (y ::
⊔

(j :: vjy)))) .

As trying an unbounded number of i and k cannot be done constructively, we define
a homomorphism f : (ω chainT × IN)→ T such that f.(s, n) tries only values of i and k
up to bound n, and yields ζ.(f.(s, n+ 1)) if that does not succeed.

f.(s, n) := if si = ζ(k).(τ.(a; v0)) for some i, k:≤ n and (a; v0):F.T
then let vj be such that si+j = ζ(k′).(τ.(a; vj)) in
τ.(a; (y :: f.((j :: vjy), 0)))

else ζ.(f.(s, n+ 1))

We leave the constructive definition of i, k, a and the vj to the reader. Finally we define⊔
s := f.(s, 0) .

9.4 Recursive object definitions

The use of a cpo in section 9.3 to define recursive objects in T is something of a detour.
In this section we give a more direct construction of T -elements out of recursive object
definitions, a construction which does not use the partial order at all.

Suppose that we have a system of mutually recursive tree expressions. We wish to
construct the (infinite or partial) trees that are defined by these expressions. For this
purpose we need, given a type V representing tree variables, a type EV that represents
tree expressions with variables from V . The family of types EV with its operations is de-
fined as a co-inductive algebra, and includes a constructor ζ:EV → EV to accommodate
nontermination.

Let F be polynomial, F.X = Σ(x:A :: XBx) and (T ; δ) := ν(F + Id) as in 9.3. Given
a valuation, i.e. a binding of expressions to variables, t:T V , any expression e:EV should
define a tree evalt.e:T . Elements of EV may have one of the following forms:

• τ.(x:F.EV), representing a tree constructed from subtrees

9.4. RECURSIVE OBJECT DEFINITIONS 105

• ζ.(e:EV), equivalent to just e

• η.(v:V), representing a variable occurrence

• γ.(d:EV , c: Π(x:A :: EV +Bx)), representing a case analysis on the result of tree
expression d. If d evaluates to some tree τ.(a;u), then evaluation of γ.(d, c) should
boil down to evaluation of ca under the valuation (t, u):T V +Ba. A suggestive
program notation for γ.(d, c) might be:

case d is τ.(a;u) =⇒ ca

where expression ca may contain variables referring to the tuple of trees u:TBa.

Thus, we define E as follows.

F ′ : TYPEType → TYPEType

(F ′.X)V := F.XV +XV + V + (XV ×Π(x:A :: XV +Bx))
(E; δ′) := νF ′

[τ, ζ, η, γ] := δ′
∪

We omit the index V of the operations. Note that there is an embedding [(V :: δ ◦̄
[σ0, σ1])]V :T ⊆t EV .

To define the evaluation function as a homomorphism, we need a substitution opera-
tion. For a fixed type W , we define the tuple of substitution functions substV : (EV +W ×
EW

V)→ EV by the equations:

substV .(τ.x, t) = τ.(F.(substV ◦ 〈I,K t〉).x)
substV .(ζ.d, t) = ζ.(substV .(d, t))

substV .(η.(0; v), t) = η.v

substV .(η.(1;w), t) = ζ.tw

substV .(γ.(d, c), t) = γ.(substV .(d, t), (x :: substV +Bx.(cx\Er, t
\EW

σ0
)))

where we use that EV is functorial in its subscript V , and

r: (V +W) +Bx→ (V +Bx) +W := [[σ0 ◦ σ0, σ1], σ1 ◦ σ0] .

To see the need for this, note that substV +Bx requires an argument of type (EV +Bx+W ×
EW

V +Bx) whereas we have cx:EV +W+Bx and t:EW
V . For well-definedness of subst, note

that these equations can be given the shape of a dual recursion (paragraph 7.3.1)

subst = δ∪ ◦ F ′.[I, subst] ◦ φ

for some φ:D → E + F ′.D in TYPEType where DV := EV +W × EW
V .

Now suppose we have a tuple of recursive expressions,

t:EV
V .

106 CHAPTER 9. PARTIALITY

In context t we define, for any expression e:EV , the tree evalt.e that is denoted by e when
parameters v:V are bound to tv. This evalt is defined as the unique homomorphism

evalt: (EV ;φ)→ (T ; δ)

for some φ:EV → F.EV + EV by:

evalt.(τ.x) = τ.(F.evalt.x)
evalt.(ζ.e) = ζ.(evalt.e)
evalt.(η.v) = ζ.(evalt.tv)

evalt.(γ.(τ.(a;u), c)) = ζ.(evalt.(substV .(ca, u)))
evalt.(γ.(ζ.e, c)) = ζ.(evalt.(γ.(e, c)))
evalt.(γ.(η.v, c)) = ζ.(evalt.(γ.(tv, c)))

evalt.(γ.(γ.(e, d), c)) = ζ.(evalt.(γ.(e, (x :: γ.(dx, c)))))

One may prove that if evalt.d ' τ.(a;u), then evalt.(γ.(d, c)) ' eval(t,u).ca .

9.5 Conclusion

We introduced the most basic notions of recursive domain theory, and defined simple
classical and constructive domains for representing optional objects. We then developed
in 9.2 a representation for lazy optional objects by means of co-induction within the
strict type theory of ADAM , which we generalized in 9.3 to lazy recursive types. While
this representation of types is quite elegant, the representation of actual recursive object
definitions is not. If one wishes to use such objects in a constructive type theory, it
seems preferable to include them in the theory as primitives.

107

Chapter 10

Related subjects

10.1 Impredicative type theories

Second-order, or impredicative, or polymorphic, type theories like the Calculus of Con-
structions [21] and second-order typed lambda calculus allow the formation of types in
the lowest universe, which we call Data: Type here, by quantification over types from
a higher universe:

A: Type
D: DataA

Π(A;D): Data
Thus, Data is very much like our Prop, except that Prop has additional equality
rules stating that equivalent propositions are equal, and that all proofs of the same
proposition are equal. Furthermore, their use is different, for objects in Data are used
for actual computation, while objects in Prop are used for stating properties only. The
impredicative quantification allows one to define all kinds of weakly initial and final
algebras, without using further primitive notions.

Example 10.1 The type of booleans can be defined by

Bool := Π(X: Data; x:X; y:X :: X)
true := (X;x; y :: x)
false := (X;x; y :: y)

b: Bool; E: Data; e0, e1:E ` if b then e0 else e1 := bEe0e1

(End of example)

A drawback of such impredicative encodings is that dependent types like T : Π(x: Bool ::
Data) cannot use an elimination on the impredicative object x, because expression
‘xDataT0T1’ would be wrongly typed.

Luo’s ECC [48] extends the Calculus of Constructions with generalized sums and
a hierarchy of universes as in ADAM . Ore [66] extended ECC further with disjoint
sums (sums over a finite type) and inductive types at the predicative level. We may
call this system ECCI. It is equivalent to ADAM without equality types and strong
proof elimination; data types are to be built at the predicative level rather than in the
impredicative universe Prop.

108 CHAPTER 10. RELATED SUBJECTS

10.1.1 Weak initial algebras

The weak initial algebra (T ; θ) that has a sequence of constructors θj :Fj .T → T can be
impredicatively defined by: (∆: C → CN is the diagonal functor X 7→ (i :: X))

T : Data := Π(X: Data; φ:F.X → ∆.X :: X)
θj :Fj .T → T := y 7→ (X;φ :: φj .(Fj .(x 7→ xXφ).y))

In particular, a weak initial F -algebra for F : Data→ Data is given by:

µwF : Data := Π(X: Data; φ:F.X → X :: X)
τ :F.µwF → µwF := y 7→ (X;φ :: φ.(F.(x 7→ xXφ).y))

Given another F -algebra (U ;ψ), there is a homomorphism

([U ;ψ]):µwF → U := x 7→ xUψ

for which we have the reduction rule ([U ;ψ])◦τ => ψ◦F.([U ;ψ]) . One cannot prove that
this homomorphism is unique. For instance, given (weak) binary products, we cannot
construct a weak paramorphism [[ψ]] such that [[ψ]]◦ τ => ψ ◦F.〈Id, [[ψ]]〉, nor even a true
τ∪ such that τ∪.(τ.y) => y, nor a (transfinite) induction property like (6.5).

In section D.7 we give an impredicative definition of IN in typed lambda calculus, and
prove that induction holds by naturality for all terms of type IN. This generalizes easily
to type µwF , and one may expect that the naturality property holds for generalized
calculi like CC too. Yet this would not yield an induction theorem within the calculus.

One might restrict, as suggested in [73], all quantifications over µwF as to use only
its standard elements, being those elements that satisfy transfinite induction:

St(x:µwF) := Π(U : DataµwF ; h: Π(y:F.µwF :: (F ′.U)(y)→ U(τ.y)) :: Ux)

where (F ′.U)(y) stands, as in paragraph 6.2.3, for the product of Uz for all immediate
predecessors z of τ.y. In particular, if F.X = Σ(a:A :: XBa), then

(F ′.U)(a; t) = Π(y:Ba :: U(ty)) .

A declaration ‘x:µF ’ may then be replaced by ‘x:µwF ; Stx ’ Now, if one’s calculus has
subtypes, one can use the subtype {x:µwF |: Stx} for µF . If it does not have subtypes,
as the Calculus of Constructions, this restriction of quantifications to standard elements
does not give a satisfactory solution, for then a quantification over all types cannot be
applied to the class of all standard elements of µwF .

So it will be more satisfactory to extend the calculus with inductive types as a
primitive notion (at the impredicative level). This is done by Coquand and Paulin in
[22], using type definitions as described in subsection 5.3.1 and a recursor as we described
in paragraph 6.2.3.

Ore [66] discusses extending CC with inductive types either at the impredicative or
predicative level.

10.2. USING TYPE-FREE VALUES 109

10.1.2 Weak final algebras

An analogous treatment as in 10.1.1 is possible for co-inductive types. The dual impred-
icative definition of weak final coalgebras utilizes Σ, but this Σ can be translated into a
double use of Π:

νwF : Data := Σw(X: Data; φ:X → F.X :: X)
:= Π(Y : Data; Π(X: Data; φ:X → F.X; x:X :: Y) :: Y)

δ: νwF → F.νwF := (X;φ;x) 7→ F.(z 7→ (X;φ; z)).(φ.x)
:= u 7→ u(F.νwF)(X;φ;x :: F.(z 7→ (X;φ; z)).(φ.x))

Given another F -coalgebra (U ;φ), the mediating morphism (anamorphism) is

[(U ;φ)]:U → νwF := u 7→ (U ;φ;u) .

10.2 Using type-free values

The notion of type as mainly used in this thesis comprises that types are introduced
together with their values; there are no values without types. An alternative is to define
types as sets of basically type-free values. A suitable universe of values is the set of
untyped lambda terms, to be taken modulo conversion.

When types may be built by unrestricted comprehension, i.e. {x |: Ψ(x)} where Ψ(x)
is a formula from second-order logic, then one gets inductive types by taking simply

µF :=
⋂

(X |: F.X ⊆ X) .

Such a system with unrestricted second-order comprehension cannot admit types as
values themselves, because this would lead to inconsistency.

10.2.1 Henson’s calculus TK

Martin Henson [39] introduced a calculus with kinds organized into a hierarchy of levels,
in order to avoid inconsistency. Unlike the hierarchy of universes in type theory, kinds
of a higher level do not collect kinds of previous levels, nor do they admit greater
cardinalities, for the kind that contains everything, {x |: True}, is already of level zero.
Rather, kinds of a higher level admit a greater definitional complexity.

• Terms are built from constants c, application (t t), lambda abstraction λx.t and
λX.t where x is a term variable and X a kind variable of some specific level, and
may furthermore contain kind expressions and logical formulae as primitive values

• Atomic formulae include t ∈ T , t = t′, and t↓ (meaning “t is defined”), where t, t′

are terms and T is a kind

• Formulae are built from atomic formulae by the ordinary propositional connectives
and by quantification over either all terms or all kinds of some specific level

• Types are kinds of level 0

110 CHAPTER 10. RELATED SUBJECTS

• Kinds of level n are either (1) kind variables of level at most n, (2) compre-
hensions {x |: Ψ(x)} over lambda terms where formula Ψ(x) may contain kind-
quantifications over levels below n only, or (3) inductive kinds Ξ(Φ,K) of level n

Inductive kinds of level n have the form Ξ(Φ,K), where Φ(z, x) is a formula that contains
kind quantifications below level n only, and K is a kind of level n. Kind Ξ(Φ,K) is the
smallest kind X such that

K ⊆ X and { z |: ∀x :: Φ(z, x)⇒ x ∈ X} ⊆ X . (10.1)

So, when there would be no level restriction on comprehension, Ξ would be definable by

Ξ(Φ,K) :=
⋂

(X |: (10.1)) .

Put otherwise, Ξ(Φ,K) is the well-ordered type generated by the relation

x ≺ z := z /∈ K ∧ Φ(z, x) .

An an initial F -algebra, it is

µ(X 7→ K ∪ { z |: ∀x :: Φ(z, x)⇒ x ∈ X}) .

Note that the second argument of Ξ is really superfluous, as by taking Φ′(z, x) :=
x ≺ z we have

Ξ(Φ,K) = Ξ(Φ′, ∅) .

Therefore we find this type unnecessarily complicated. The comprehension and induction
rules given in [39] and some other publications are actually erroneous — and the claimed
consistency proof flawed. For example, the induction rule draws a conclusion ∀z:∈
Ξ(Φ,K) :: ψz without a premise ∀z:∈ K :: ψz . By taking Φ(z, x) := False, one would
obtain ∀z :: ψz for every formula ψz. Later publications, like [40], had correct rules.

A more fundamental objection is that the usefulness of kinds and formulae as values
is negligible, because terms may not be used in place of kinds or formulae. Henson seems
to miss this point. We note that the higher level abstraction facilities are quite limited:
one can abstract over kinds, but not over functions on kinds. Finally, we remark that
the intuitive basis for this hierarchy of kinds is rather weak.

10.3 Inductive universe formation

Predicative universes of types or sets, such as our Typei, are described by listing the
rules for constructing their elements. Then one might add a principle that the universe
is actually the least (or initial) one that is closed under these rules, by giving a universe
elimination (or recursion) principle. This would make the universe an initial algebra in
a category of families of types and extensions between them. N.P. Mendler discusses the
categorical semantics of such recursion rules in [61].

One might strengthen type theory by adding a rule for introducing new inductive
universes inside the system by listing their introduction rules. The difference between

10.3. INDUCTIVE UNIVERSE FORMATION 111

universes and ordinary inductive types is that introduction rules for universes, like Π-
formation (B.9), when they have a premise that A be a type in the universe, may in
subsequent premises quantify over the type (associated with) A itself.

For this purpose it is best to treat universes à la Tarski, namely as a pair (U ;T)
where U is a type and T assigns to each “code” A:U a type TA. So a universe is a
family of types.

For any type S, we define a category FAMS. Its object are families in FamS, and
its morphisms are given by:

(D; s)→ (D′; s′) in FAMS := { f :D → D′ |: ∀d:D :: sd = s′(f.d)} . (10.2)

A universe formation principle might read: For any endofunctor F on FAMType
that satisfies some constraints, there is an initial F -algebra. The constraints that are
required here are much more difficult to express than for ordinary inductive types, and
we will not try to do so.

Example 10.2 The type constructor Π gives rise to an endofunctor P on FAMType,
such that there is a morphism p:P.(U ;T) → (U ;T) just when the universe is closed
under Π, i.e. when for a:U and b:UTa there is some c:U with Tc ∼= Π(x:Ta :: T (bx)).
This P is given by:

P.(U ;T) := (Σ(a:U :: UTa);
((a; b) :: Π(x:Ta :: T (bx))))

and for f : (U ;T)→ (U ′;T ′) in FAMType the definition of P.f is obtained from (10.2):

P.f ∈ P.(U ;T)→ P.(U ′;T ′)
⇔ ∀a:U ; b:UTa; (a′; b′) := P.f.(a; b) ::

Π(x:Ta :: T (bx)) = Π(x:T ′a′ :: T ′(b′x)) {(10.2) for P.f}
⇐ ∀a:U ; b:UTa; (a′; b′) := P.f.(a; b) ::

f.a = a′ ∧ ∀x:Ta :: f.bx = b′x {∀a:U :: Ta = T ′(f.a)}
⇔ ∀a:U ; b:UTa :: P.f.(a; b) = (f.a; fTa.b)

We can do the same for other type constructors, and define an endofunctor F such
that the carrier of an initial F -algebra may serve as the definition of the universe Type0.
The object part of F is as follows:

F.(U ;T): FAMType := ({N | Fin(n: IN) | Prop | Holds(P : Prop)
| Pi(a:U ; b:UTa) | Sigma(a:U ; b:UTa) };
(N :: IN
| Fin(n) :: n
| Prop :: Prop
| Holds(P) :: P
| Pi(a; b) :: Π(x:Ta :: T (bx))
| Sigma(a; b) :: Σ(x:Ta :: T (bx))
))

112 CHAPTER 10. RELATED SUBJECTS

10.4 Bar recursion

Though the scheme of bar recursion introduced by Spector [80] has little to do with
inductive types, we include it here because it is so remarkably different from our other
recursion schemes. It defines a function f :A∗ → B on finite sequences by recursive
application to longer sequences, until a special termination condition holds.

Well-definedness of such a function depends on a property that a computable function
c:Aω → IN is continuous in the sense that its value on an infinite sequence t depends
only on a finite prefix t|n of t:

∀t:Aω :: ∃n: IN :: ∀u:Aω :: (t|n = u|n ⇒ c.t = c.u) . (10.3)

Let a type A with some default value a:A be given. We define an embedding of finite into
infinite sequences. (Alternatively, we may restrict the definition to nonempty sequences
and replace ‘a’ by s0.)

s:A∗ ` [s]:Aω := (i :: if i < #s then si else a)

The termination condition of f mentioned above is c.[s] < #s. The point is that, as s
grows in length, c.[s] must become constant and the condition will be satisfied when s
is long enough.

Theorem 10.1 (Bar recursion) Classically, one can derive:

c:Aω → IN
c is continuous
b:A∗ → B
e(:BA):A∗ → B

∃!f :A∗ → B ::
∀s:A∗ :: f.s = if c.[s] < #s then b.s else e(x :: f.(s++ 〈x〉)).s

Proof. The equation for f obviously has a least solution f :A∗ → ↑B in the domain of
partial functions. Then for any s:A∗ such that f.s = ⊥ one has

c.[s] ≥ #s ∧ ∃(x:A :: f.(s++ 〈x〉) = ⊥) .

Let g: Π(s:A∗; f.s = ⊥ :: {x:A |: f.(s++ 〈x〉) = ⊥}) be a corresponding choice operator.
To prove totality of f , suppose f.s = ⊥ for some s:A∗. Define t:Aω using total

induction by
ti := if i < #s then si else g(t|i−1)

and see that, for i:≥ #s, one has f.(t|i) = ⊥, hence c.[t|i] ≥ #t|i = i.
Let n be according to (10.3) for t, then for i:≥ n we have c.t = c.[t|i] as t|n = [t|i]|n.
Taking i := max〈#s, n, c.t + 1〉, it follows that c.t = c.[t|i] ≥ i ≥ c.t + 1, contradiction.
Thus f.s = ⊥ cannot be, and f is total.

Function c actually defines a well-founded relation by

|≺| := {s:A∗; c.[s] ≥ #s; x:A :: (s++ 〈x〉, s) } .
In a constructive calculus, the continuity condition for c is automatically satisfied and

may be omitted from the premises. In that case, the principle of bar recursion is es-
sentially stronger than algebraic recursion in typed polymorphic lambda calculus, as
Barendsen and Bezem prove [10].

113

Chapter 11

Reflections and conclusion

In this thesis, we played and experimented with language notations, language definition,
and constructive type theories, employing these in studying abstract formulations of
principles for inductive types, and the relationships between these. It was not our
primary aim to solve specific problems, but rather to unify different approaches and to
obtain an overall perspective on them. Looking back we can make a number of reflections
on the areas mentioned.

11.1 Mathematical language

We developed the language ADAM as a medium to express principles of inductive types.
We want to make the following remarks.

11.1.1 Ambiguity. One of the characteristics of ADAM is the great amount of am-
biguity that we allow in defining and extending the language. We found this comfortable
in shaping notations and identifiers that are easy to use, but it may make automatic
checking of concrete text difficult or unfeasible. However, actual writing in a formal
calculus usually takes place through interactive proof editing, where the author can im-
mediately indicate how to resolve any ambiguities, and proofs are stored in a format that
represents the internal structure rather than the concrete appearance. Thus, ambiguity
is not insurmountable, but it requires attention of the author not to obscure his text.

11.1.2 Generalized typing. ADAM is based on constructive type theory. The
availability of generalized type constructors made it possible to treat many constructive
calculi as sublanguages, and allowed a unified treatment of parametrization and finite
and infinite products. Whether it is desirable or necessary to have a constructive type
theory as the logical foundation of the language remains to be seen; we discuss this in
section 11.2.

11.1.3 Proof notation. We did not define a formal proof notation, but it is clear
that it should be a structured, readable representation of natural deduction style proofs,
without the obligation to write down all intermediate results. The very terse proof

114 CHAPTER 11. REFLECTIONS AND CONCLUSION

representation of pure type theory is generally too unwieldy to read, but may be held
available to be used for small, almost evident proofs and for proofs that the reader is
expected to skip.

Sometimes a linear proof style is convenient. Such a style can very well be embedded
within a natural deduction framework, but it can never replace it fully. More remarks
on proof notation appear in section 11.4.

11.1.4 Refinement and scope rules. Creative thought has to be given to the
subject of scope rules. Often, during the construction of an object or proof, one makes
definitions that one would like to extend beyond the current (sub-)proof. This conflicts
with the scope rules as used in any modern programming language. Linear proofs have
even more difficulty with this (see e.g. U ′ on page 77), because a definition made within
a line of a linear proof would by ordinary rules not even extend to the following lines
that lay outside the local expression.

Somewhat related is the representation of stepwise refinement. Part of a construction
may be left open to be filled in later on, perhaps guided by side conditions on the
construction. In appendix C we experiment a bit with “goal variables” to fill temporary
gaps, which are given a value further on in the proof. These are not to be confused with
the “place holders” that may be used in interactive editing [50] to temporally hold open
places, for these disappear from the proof when they are filled in. Again there are scope
problems, for it is not evident which identifiers that were visible at the open place may
be used in its refinement.

11.1.5 Variable abstraction. We introduced a double-colon notation to be used
both for simple variable abstraction (x :: bx), quantification ∀x:A :: Px, families (x:A ::
bx), simple case distinction on an enumerated type (false :: b0 | true :: b1), and pattern
matching (2 :: b | (x, y) +< z :: cxyz). We found it comfortable to work with and clearer
than a little dot (as in ∀x:A.Px) when the declarations x:A take up a bit more space,
especially as we can extend these with propositional assumptions and local definitions. It
extends nicely to pattern matching, unlike the dot or bracket abstraction [x]bx. We liked
the equivalence between finite tuples (t0, t1):T0×T1 and abstractions (i :: ti): Π(i: 2 :: Ti).

11.2 Constructive Type Theory

11.2.1 Objections. We have used type theory as the mathematical foundation of
our research. There are some problems connected with this. The first is the gap between
a single-valued predicate and a term denoting the same object. We had to introduce
some extra machinery to bridge it (appendix C). It arises as soon as propositions are
distinguished from data types. Original Martin-Löf type theory did not make this dis-
tinction, but it is needed for higher order quantification. Our solution was satisfactory,
but we had to give up the property that any closed expression of some type is reducible
to head canonical form for that type, for reasons discussed in subsection C.3.2. Taken
together, it removed part of the original simplicity of the propositions-as-types idea.

Secondly, the representation in type theory of equality proofs and type conversion
either is rather clumsy, or just omitted from proof terms.

11.3. LANGUAGE DEFINITION MECHANISM 115

Thirdly, generalized type theory requires parameters to be used for instantiating
polymorphic objects and for supplying proofs to operations that have conditions on their
arguments. If we understand the meaning of a term to be its computational content,
these parameters are superfluous and make object expressions unnecessarily complicated.

11.2.2 Universes. In this thesis, we assumed a hierarchy of universes Typei, but
usually we did not specify in which universe we worked. Most developments could be
given in any universe, and it would be desirable if the calculus supported a formalization
of this, by means of some kind of “universe parameters”. For example, the description
of category theory should be parametrized with the universe from which the classes of
objects and arrows may be chosen. Next, the theory may be applied to the big category
of categories itself by instantiating it to a higher universe.

Rather than having a fixed hierarchy, universes might be formed inside the calculus
by specifying their basic types and type constructors. The latter may either be chosen
from a fixed set, or perhaps, as suggested in section 10.3, be user-defined.

A simpler and easily realisable solution is to allow the formation of the parametrized
universe Type(Υ) of all types generated from a family of basic types Υ. Then one could
define Type0 := Type〈〉; Type1 := Type〈Type0〉, etc.

11.2.3 Alternatives. When selecting a foundation for mathematical language, I
would make the following observations.

• Do not use proof information in terms. This gives unnecessary overhead and is
counterintuitive for most mathematicians.

• Use classical logic by default, for most mathematicians do not care about construc-
tivism. Constructive arguments may be specially distinguished, if needed.

• An interesting simple type theory is given by Lambek and Scott [46, p. 128]. Its
class of types contains only the singleton type 1, binary products A × B, infinity
IN, powertypes PA, and a type of propositions Ω.

11.3 Language definition mechanism

We used a form of two-level grammar, or Definite Clause Grammar with equations, to
define part of our language ADAM . We find it both very elegant and powerful, as it
subsumes Horn clause logic. It is really a form of logic programming with equations, but
note that we regard predicates as special syntax classes rather than translating syntax
classes into predicates on strings of characters, as is more common. A lot of research is
going on in this area, see e.g. [24].

The mechanism can be used to define both the basic foundational theory and the
concrete language with its semantics, but also search strategies for finding missing parts
of proofs. It is possible that a (prototype) implementation of a language be automati-
cally generated from the language definition, provided that the definition is set up with
executability in mind. One ingredient of the definition mechanism we did not touch
upon is the following.

116 CHAPTER 11. REFLECTIONS AND CONCLUSION

11.3.1 Proving grammar properties. We defined the basic theory around a pred-
icate, ‘Γ ` t:T ’, and the concrete language around classes like ‘Term(Γ, γ, t, T)’. We
claimed the definition to be such that the following holds:

Whenever one has TermΓ,γ(t, T), then Γ ` t:T ,

yet we did not prove this. There is need for a formal notation for stating and proving
such grammar properties, for example by checking that each production rule for Term
corresponds to one or a few rules for `.

Besides simple implications, one has to check well-definedness of syntactic operations,
like:

For any Term t, Subst φ, one has Term t[φ] .

This involves an induction on the structure of terms. Existential properties “For all
x, there is a y with p(x, y)” can be eliminated (as is often done in automatic theorem
proving) by introducing an additional syntactic operation: “For all x, p(x, f (x))”. This
transformation is called a “Skolemization”. Elementary automatic theorem proving can
probably check all grammar properties we need, when we provide a list of them and
indicate on which variables to perform induction.

11.4 Proofs and proof notation

11.4.1 What is a proof? A (formal) proof of a statement in the basic theory is
normally its derivation tree. There is no necessity to encode this tree as an object in
the theory. If we have developed a mathematical language and verified that a proof
formulated in this language guarantees derivability of the statement in the basic theory,
then the derivation tree of such a proof can be accepted as a formal proof indeed. The
textual representation of such a proof can only be accepted when there is some reasonable
upper bound on the amount of computation needed to verify it.

11.4.2 Modularization. The basic theory should be embedded within a logical
framework [42] for the modularization and parametrization of theories. The framework
may also provide facilities for information hiding, like “Abstract Data Types”.

11.4.3 Proof format. Leslie Lamport [47] has designed a format for “Structured
Proofs” in natural deduction style, featuring a neat numbering scheme for referring to
proof steps and assumptions, and allowing linear proofs where appropriate. Such a
format may very well be used as a standard format for proofs of theorems.

11.4.4 Local structure. Proofs for distinct steps of a deduction could be given by
means of an expression that gives complete combinatorial information of all derivation
steps and required facts, but normally one would be satisfied with giving just hints.
Checking these hints would require some proof search, which can be defined through
logic programming. It may be useful for some facts and assumptions to be marked as
“active”, meaning that they may be used without being hinted at.

11.5. INDUCTIVE TYPES 117

11.4.5 Equality proofs. Suppose we have (a reference to) a proof p proving an
equality a = b (or a sequence of such proofs). A proof of ta = tb, where tx may be a
complicated term, say f(g(x), c), has a number of intermediate steps like g(a) = g(b),
derived by extensionality of g. A natural notation for the full proof might be to insert
p for variable x in tx, properly marked, e.g. as

%f(g(· p ·), c) .

Here, ‘%’ marks the start of the extensionality proof format, and ‘(· ·)’ marks the inser-
tion of ordinary proof notation.

Essentially the same format can be used for naturality proofs: given a polymorphic
term

x:S[α] ` t[x]:T [α]

and a relation R:A ∼ B, the extended relation (section D.3) might be noted %T (·R ·),
and given a proof p proving (a, b) ∈ %S(·R ·), we would have by naturality (theorem
D.1):

%t(· p ·) proving (t[a], t[b]) ∈ %T (·R ·) .

11.5 Inductive types

We started with inductive subset definitions given by means of rule sets, well-founded
relations, or monotonic operators. We went on with the description of inductive types,
defined by means of construction and elimination rules or as the initial object of the
category of algebras of appropriate signature.

The initial algebra approach allowed us to separate the investigation of forms of
inductive type definition from the study of forms of (structural) induction and recursion
over an inductive type. For an overview of these forms, we refer to the conclusions of
chapter 5 (page 73) and 6 (page 83). Here we list some of the decisions to be made when
including inductive types in a language definition.

• Do the inductive types appear as fixed points of functors, or as initial algebras of
appropriate signatures? The first option is a special case of the second.

• Are inductive types to be generated by

1. providing actual parameters for one of the admissible forms of signature or
functor, or

2. writing down the desired signature or functor, which has to be matched
against the admissible forms, or

3. writing down the signature or functor according to (inductive) production
rules (section 5.3)?

• For families of mutually inductive types, does each type from the family have a
fixed (set of) constructors, or may one have “plain” algebra signatures where the
codomain of a constructor may depend on its parameters?

Similarly, for recursive function definitions:

118 CHAPTER 11. REFLECTIONS AND CONCLUSION

• Are they to be given by providing actual parameters for some recursor, or by
writing down the desired recursion equations where the correctness checker has to
match these to the admissible forms of recursion?

• Does one allow dependent recursion, and if not, does one include a uniqueness
condition?

• Does one allow liberal mutual recursion, using either equality types or syntactic
equality checks?

11.6 Directions for further research

The work and ideas presented in this thesis call for further research in the following
directions.

1. Language definition method. Research on the method of using two-level gram-
mar to define a semi-decidable language which is formally reduced to a foundational
theory:

(a) experiment with using the method on a small language;

(b) formally define the method.

2. Mathematical language.

(a) A suitable foundation remains to be established, especially when constructive
and classical reasoning are to be combined in a single system.

(b) Develop proof notations for ADAM , including e.g. readable notations for
structuring the argumentation, modularization, easy use of equality, better
scoping rules for definitions made within a proof.

(c) Formally define a usable subset of ADAM .

(d) Write a readable manual for ADAM .

3. Inductive types.

(a) Analyze and compare how inductive types as included in current languages
follow our schemes.

(b) Define a good concrete notation for inductive types in a general language like
ADAM .

4. Relational notation.

(a) The naturality theorem for simple types should be generalized to dependent
types. This will require a non-standard interpretation of generalized type
expressions, where type variables are replaced by relations as in 11.4.5.

(b) The same interpretation may be used for replacing type variables by categor-
ical arrow sets. Thus, one type expression can define both the object and
arrow part of a category.

11.6. DIRECTIONS FOR FURTHER RESEARCH 119

(c) Internalize naturality: naturality of objects in ADAM should be available
within ADAM itself.

120

Appendix A

Set theory

This appendix contains some basic notions of set theory, and two models of set the-
ory within type theory. First we list the axioms of Zermelo-Fraenkel set theory with
choice (ZFC). Then we present two well-known classes of infinite numbers, namely or-
dinals and cardinals. (Here we used the outline by Manes [54, pp. 71–72], who cites
Monk [63].)

In type theory one can define a big type in Type1 that gives a model of ZFC. We
present two models in A.5 and A.6; the latter one uses an inductive type with equations.

Finally, non-wellfounded sets are described in A.7.

A.1 ZFC axioms

We introduce Set as a primitive sort, together with a binary predicate membership,
(∈):⊆ Set2, and abbreviate

x ⊆ y := ∀(z:∈ x :: z ∈ y) .

Please do not get confused by the overloaded use of ‘∈’, ‘⊆’ and other set operations:
they are defined for subset types, for families, and for models of ZFC as well. The first
interpretation will not be used in this appendix.

The axiom of extensionality is about equality of sets:

s, t: Set ` ∀(x :: x ∈ s⇔ x ∈ t)⇒ s = t (A.1)

There are five axioms stating the existence of primitive sets, each accompanied with
axioms describing the members of these sets.

Separation: If P (x) is a propositional formula with parameter x:

P : PropSet, s: Set ` {x:∈ s |: P (x)}: Set;
x ∈ {x:∈ s |: P (x)} ⇔ x ∈ s ∧ Px (A.2)

Just as in ADAM , we use the symbol ‘|:’, read “such that”, instead of the more conven-
tional ‘|’ or ‘:’ because we find the latter two too symmetric and want to use them for
other purposes. Note also that ‘:∈’ is used for introducing a variable that ranges over a
set.

A.2. SET ENCODINGS 121

Union, Power set , and Infinity :

s: Set `
⋃
s: Set;

x ∈
⋃
s ⇔ ∃(y:∈ s :: x ∈ y) (A.3)

s: Set ` P(s): Set;
x ∈ P(s) ⇔ x ⊆ s (A.4)

` ω: Set;
∃(y:∈ ω :: ∀z :: z 6∈ y) ∧ ∀(y:∈ ω :: y ∪ {y} ∈ ω) (A.5)

where y ∪ {y} ∈ ω abbreviates the formula ∃z:∈ ω :: ∀u :: u ∈ z ⇔ u ∈ y ∨ u = y .
Replacement . If F is a unary operation (that may be given as a predicate):

s: Set, F : SetSet ` {x:∈ s :: Fx }: Set;
y ∈ {x:∈ s :: Fx } ⇔ ∃(x:∈ s :: y = Fx) (A.6)

Many more operations on sets may be derived, for example:

∅: Set := {x:∈ ω |: False}
x: Set ` {x } := {z:∈ ω :: x }

x, y: Set ` {x, y } := {z:∈ ω :: Fz }

where Fz :=
{
x if z = ∅
y if z 6= ∅

x ∪ y :=
⋃
{x, y }

x ∩ y := { z:∈ x |: z ∈ y}

The axiom of foundation or regularity says that the membership relation ∈ is well-
founded. We formulate it in a constructive form:

P : PropSet ` ∀(x :: ∀(y:∈ x :: Py)⇒ Px)⇒ ∀(x :: Px) (A.7)

The axiom of choice says that, given a mapping to nonempty sets, there exists a
function picking one element of each set. (We use the encodings for functions given
below.)

s: Set ` (∀x:∈ dom s :: s(x) 6= ∅) ⇒ (∃f :: ∀x:∈ dom s :: f(x) ∈ s(x)) (A.8)

A.2 Set encodings

We may use the following standard encodings of pairs, functions, and naturals, using
only the above axioms and operations.

〈x, y〉 := { {x}, {x, y} }
fst p :=

⋃
{x:∈

⋃
p |: ∃y: Set :: p = 〈x, y〉}

snd p :=
⋃
{ y:∈

⋃
p |: ∃x: Set :: p = 〈x, y〉}

122 APPENDIX A. SET THEORY

X × Y :=
⋃
{x:∈ X :: {y:∈ Y :: 〈x, y〉 } }

dom f := {p:∈ f :: fst p }
cod f := {p:∈ f :: snd p }
Y X := { f :P(X × Y) |: ∀x:∈ X :: ∃!y: Set :: 〈x, y〉 ∈ f}
f(x) :=

⋃
{ y:∈ cod f |: 〈x, y〉 ∈ f}

0 := ∅
n+ 1 := n ∪ {n}

A.3 Ordinals

Ordinals are special sets, but the class Ord of all ordinals is too big to be a set itself.
We give two definitions of this class.

A.3.1 Inductive definition of ordinals. The class Ord is the least class (i.e. the
intersection of all classes) X:⊆ Set such that:

1. For any x in X, its successor x ∪ {x} is in X;

2. The union of any set of X-members is in X.

Note that, as the empty set ∅ is the union of the empty set of ordinals, it is an ordinal
by clause 2. It is named 0 as well.

This definition gives us a principle of transfinite induction: any predicate on sets
that is closed under the clauses above holds for all ordinals. Unfortunately, it is a second
order definition that cannot be given in first order logic. However, the following one is
equivalent [63]:

A.3.2 First order definition of ordinals. A set (of sets) x is ∈-transitive iff when-
ever y ∈ x and z ∈ y then z ∈ x. An ordinal is an ∈-transitive set x such that all y ∈ x
are also ∈-transitive.

If x, y are ordinals then (using the axiom of foundation) exactly one of x ∈ y, x = y,
y ∈ x occurs (classically), so that Ord is linearly ordered via:

x ≤ y := x = y ∨ x ∈ y

If X is a nonempty set (or class) of ordinals then
⋂
X is an ordinal and is in X; in

particular, X has a least element. Further, for ordinals x, y, x ≤ y holds iff x ⊆ y.

A.4 Cardinals

A cardinal is an ordinal which is not equipotent (equipotent means “in bijective corre-
spondence”) with a smaller ordinal. The class of cardinals is noted ‘Card’.

Given any set A there exists (classically) a unique cardinal card(A) that is equipotent
with A. So cardinals are useful for measuring the size of sets.

A.5. A MODEL OF ZFC 123

If x is a cardinal, x+ denotes the next largest cardinal. There is no largest cardinal,
that is, x+ always exists. A cardinal x is regular iff x is infinite and for every family
y: FamCard with each yi < x and card(Dom y) < x, it is the case that card Σy < x. The
first infinite cardinal, ω, is regular, and for any infinite cardinal x, x+ is regular.

A.5 A model of ZFC

Within type theory, one may represent a set together with all its element sets by a
directed graph (N : Type0; S:⊆ N2) together with a designated root n:N .

Given graph (N ;S), a node x:N corresponds to the set of those sets that correspond
to the nodes in S[x] = { y:N |: (x, y) ∈ S}. A partial interpretation as sets of such
triples (N ;S;n) is recursively specified by:

[[N ;S;n]] = {m:∈ S[n] :: [[N ;S;m]] } .

We define the type T of directed rooted graphs, followed by an inductive definition of
a partial equivalence relation ≡ on T . Only triples where the root starts a wellfounded
tree appear in ≡.

T : Type1 := { (N : Type0; S:⊆ N2; n:N) }
R:PT 2 ` Define (�R):PT 2 by

(N ;S;n) �R (N ′;S′;n′) := ∀x:∈ S[n] :: ∃x′:∈ S′[n′] :: ((N ;S;x), (N ′;S′;x′)) ∈ R
(≡):PT 2 :=

⋂
(R:PT 2 |: (�R) ∩ (�R) ⊆ R)

Now ZFC:⊆ PT will be the subtype of all ≡-equivalence classes. (For non-wellfounded
sets, see A.7.)

ZFC:⊆ PT := {t:T ; t ≡ t :: |t ≡| }
P,Q: ZFC ` P ∈ZFC Q := ∃(N ;S;n):∈ Q; x:∈ S[n] :: (N ;S;x) ∈ P

We now define the ZFC set constructions on the type T of triples. So, let (N ;S;n):T
be a triple, P :P(T) a predicate and F :T T an operation on T .

{T t ∈ (N ;S;n) |: P (t)} :=
(1 +N ;
{ x:∈ S[n]; P (N ;S;x) :: ((0; 0), (1;x))
| (x, y):∈ S :: ((1;x), (1; y))
}; (0; 0))

⋃
T (N ;S;n) :=

(1 +N ;
{ x:∈ S[n]; y:∈ Sx :: ((0; 0), (1; y))
| (x, y):∈ S :: ((1;x), (1; y))
}; (0; 0))

PT (N ;S;n) :=

124 APPENDIX A. SET THEORY

(1 + P(S[n]) +N ;
{ P :P(S[n]) :: ((0; 0), (1;P))
| P :P(S[n]); x:∈ P :: ((1;P), (2;x))
| (x, y):∈ S :: ((2;x), (2; y))
}; (0; 0))

{T x ∈ (N ;S;n) :: Fx} :=
let (My;Qy;my) := F (N ;S; y) in
(1 + Σ(y:∈ S[n] :: My);
{ y:∈ S[n] :: ((0; 0), (1; y;my))
| y:∈ S[n]; (u, v):∈ Qy :: ((1; y;u), (1; y; v))
}; (0; 0))

ωT :=
(1 + IN;
{ i: IN :: ((0; 0), (1; i))
| i: IN; j:< i :: ((1; i), (1; j))
}; (0; 0))

It is straightforward to extend these constructions to ZFC, e.g.
⋃

ZFCQ :=
⋃

(t:∈ Q ::⋃
T |t ≡|). We leave it to the reader to check that they satisfy the axioms, and that the

axioms of extensionality, foundation, and choice are satisfied.

A.6 An inductive model of ZFC

Yet a simpler model uses an inductive type. Note that Fam0: TYPE1 → TYPE1 is a
polynomial functor, with

Fam0(X: TYPE1) := Σ(D: Type0 :: XD) ,
Fam0(h:A→ B) := (D; a) 7→ (D;hD.a) .

We define a membership relation (∈f):⊆ X × Fam0X and a subfamily relation (⊆f):⊆
Fam2

0X:

x:T ; t: FamT ` x ∈f t := ∃d: Dom t :: x = td

t, t′: FamT ` t ⊆f t
′ := ∀x:∈f t :: x ∈f t

′

An initial Fam0-algebra contains families of families of families ad infinitum. Modulo
the appropriate equation these families model sets.

(ZFC; τ) := µ(Fam0;E) where

E(X;φ) := {f : Fam2
0X; f0 ⊆f f1 ∧ f1 ⊆f f0 :: (φ.f0, φ.f1) }

x ∈ZFC y := ∃(f : Fam0 ZFC; i: Dom f :: y = τ.f ∧ x = fi)

The (total) interpretation [[·]]: (ZFC . Set) is recursively defined by:

[[τ.f]] = {x:∈f f :: [[x]] }

A.7. ANTI-FOUNDATION 125

The extensionality axiom (A.1) follows easily from E(ZFC; τ) ⊆ (=ZFC) and the
following lemma.

Lemma A.1 For x: ZFC, f : Fam ZFC, one has:

x ∈ZFC τ.f ⇔ x ∈f f

Proof. ⇐ is trivial.
⇒: we must prove that if τ.f = τ.f ′ and x ∈f f

′, then x ∈f f . Note that, as E(X;φ)
is an equivalence, one has (=ZFC) = E(ZFC; τ), so if τ.f = τ.f ′ then f ′ ⊆f f .

We define the operations required by the axioms (A.3) till (A.6), writing ‘∈’ for ∈ZFC,
by:

{x:∈ s |: P (x)} := τ.(x:∈ s; Px :: x)⋃
s := τ.(y:∈ s; x:∈ y :: x)

P(s) := τ.(P :P(ZFC) :: τ.(x:∈ s; Px :: x))
ω := τ.(i: IN :: τ.(h.i)) where

h.0 := 〈〉,
h.(k + 1) := h.k ++ 〈τ.(h.k)〉

{x:∈ s :: Fx } := τ.(x:∈ s :: Fx)

To check their properties, one applies lemma A.1 over and again.
Finally, the foundation axiom (A.7) holds by induction over the definition of ZFC,

and the lemma.

A.7 Anti-foundation

Peter Aczel [4] proposed an alternative view on sets, in which non-wellfounded sets are
permitted. He removed the foundation axiom (A.7) from ZFC, and replaced it by an
anti-foundation axiom (AFA), stating that, given a directed graph, each node x in it
corresponds to a set such that the elements of the set are the sets that correspond to
the subnodes of x in the graph. Thus:

s: Set; R:P(s× s) ` ∃!f : Sets :: ∀x:∈ s :: fx = f [R[x]] (A.9)

We may call this system ZFA. A noninductive model of ZFA can be obtained from our
T as defined in section A.5, by using the dual equivalence relation:

(≡′) :=
⋃

(R:PT 2 |: R ⊆ (�R) ∩ (�R))

ZFA := {t:T :: |t ≡′| }

Remark that ≡′ is total, that is, (=T) ⊆ (≡′) .

126

Appendix B

ADAM’s Type Theory

In this appendix we define the type theory ATT that forms the foundation of the language
ADAM described in chapter 2. It includes impredicative propositions, a hierarchy of
universes, strong sums for non-propositions, naturals, finite types, and equality types à
la Martin-Löf. Without the naturals, finite types, and equality types, it would be Luo’s
Extended Calculus of Constructions [48].

As this calculus serves merely as a logical foundation, notational convenience is not
of primary importance. However, we include a few derived notations to make direct
employment of the calculus, as in the examples of appendix C, more comfortable.

We also outline a set-theoretical semantics of the calculus in B.10, assuming a suffi-
ciently strong set theory.

B.1 Abstract syntax

We have the following abstract syntax for terms and contexts, where ‘::=’, ‘|’, ‘{’, ‘}’,
and ‘.’ are metasymbols, and T∗ stands for a possibly empty list of expressions from
class T. We assume a syntax class Var of variables, a class Const of constants, and a
class Nat of naturals, with addition ‘+’ and comparison ‘<’, to be used for indexing
constants.

Term ::= Var

| Const(Term,∗)
| (Var :: Term) .

Context ::= {Var: Term; }∗ .
Statement ::= Term: Term .

So (abstract) terms are built from variables, constants with a list of arguments, and
abstractions (v :: t), which are like λv.t in lambda calculus. As in typed lambda calculus
à la Curry, abstractions do not carry the type of the bound variable with them, so terms
will not have unique types.

A context Γ consists of a sequence of assumptions of the form v:T , where v is a
variable and T a term (representing the type of v). We will define a derivability relation

B.2. META-PREDICATES 127

Γ ` t:T . The intended meaning is that, for any correct assignment of values to the typed
variables in Γ, term t represents a value of type T .

We write ‘ ’ for an anonymous variable. Among the constants in Const we use the
following primitive ones, listed with their arity, notational sugar, and intended meaning.

Prop 0 Type of all propositions
Typei 0 for any Nat i Type of all types of level i
Π 1 Cartesian product of a family of types
@ 2 f(a) := @(f, a) Selecting a component from a tuple or function
Σ 1 Disjoint sum of a family of types
(;) 2 (a; b) := (;)(a, b) Element of a disjoint sum
Σ elim 1 Elimination on a disjoint sum
n 0 for any Nat n Finite type with elements 0, . . . , n− 1
(,n) n for any Nat n; (a0, . . . , an−1) := (,n)(a0, . . . , an−1)

Element of a cartesian product over finite type n
IN 0 Type of natural numbers
s 1 Successor of a natural
IN rec 2 Recursion over the naturals
∀ 1 Universal quantification of a family of propositions
hyp 1 Proof of a universal proposition by hypothesis
app 1 Application of a proof of a universal proposition
∃ 1 Prop. stating existence of an inhabitant of a type
∃ in 1 Proof of an existential proposition
∃ elim 1 Elimination on an existential proposition
= 1 (a =A a′) := @(=(A), (,2)(a, a′))

Equality predicate on any type
eq 0 Trivial proof of equality
ac 1 Proof by the axiom of choice

Parentheses may be omitted when no ambiguity arises.

B.2 Meta-predicates

The calculus defines a substitution operation and two predicates on terms and contexts.

B.2.1 Substitution. s[v := t] for terms s, t and variable v, or more generally s[φ]
where φ is a list of single substitutions, {Var := Term, }∗ φ, is defined as usual:

v[φ] := t if in({v := t}, φ), for some t
v[φ] := v otherwise

c(t0, . . . , tn−1)[φ] := c(t0[φ], . . . , tn−1[φ])
(w :: s)[φ] := (w′ :: s[w := w′][φ]) (w′ free in neither (w :: s) nor φ)

The use of named variables may of course be replaced by some numbering scheme.

128 APPENDIX B. ADAM’S TYPE THEORY

B.2.2 Reduction. Reduction is a reflexive and transitive binary predicate t => t′

on terms. It is inductively defined by structural rules

t => t
t => t′ t′ => t′′

t => t′′

ti => t′i (i = 0, . . . , n− 1)
c(t0, . . . , tn−1) => c(t′0, . . . , t

′
n−1)

t => t′

(v :: t) => (v′ :: t′[v := v′]) (v′ not free in (v :: t))

and rules related to specific constants:

(v :: b)(a) => b[v := a]
Σ elim(t)(a; b) => t(a)(b)

(t0, . . . , tn−1)(k) => tk

IN rec(b, t)(0) => b

IN rec(b, t)(sx) => t(x)(IN rec(b, t)(x))

Two terms are called convertible when they reduce to the same thing: t == t′ when
there is some term t′′ such that t => t′′ and t′ => t′′.

Reduction has the Church-Rosser property: if t => t′ and t => t′′, then t′ => t′′′

and t′′ => t′′′ for some term t′′′. Hence we have that convertibility is transitive.

B.2.3 Derivable judgements. A judgement consists of a context Γ and two terms
t, T . Derivability of judgements is denoted by an infix turnstyle and colon, ‘Γ ` t:T ’,
and is defined by a set of rules. Intuitively, such a judgement represents the assertion
that for any assignment to the variables in Γ of values of the respective type, the term
t denotes a value of the type denoted by T . See section B.10 for a formal semantics.

The structural rules for variable occurrences are:

Γ ` A: Typei

Γ; v:A ` v:A
(B.1)

Γ ` t:T
Γ ` A: Typei

Γ; v:A ` t:T (B.2)

and the type T of a judgement may be replaced by a type that is convertible to T :

Γ ` t:T
T == T ′

Γ ` t:T ′
(B.3)

The rule for introducing a bound variable is

Γ; x:A ` b:Bx
Γ ` (x :: b): Π(A;B)

(B.4)

B.3. UNIVERSES 129

All other rules are of the form
Γ ` t0:T0

...
Γ ` tn−1:Tn−1

Γ ` t′:T ′

for arbitrary Γ, and we will write them on a single line, as

t0:T0; . . . ; tn−1:Tn−1 ` t′:T ′

As a derived rule, derivability is closed under substitution:

Γ; x:A; Γ′ ` t:T
Γ ` a:A
Γ; Γ′[x := a] ` t[x := a] :T [x := a]

B.3 Universes

A universe is a type whose elements are types themselves. There is a universe Prop of
propositions and a cumulative hierarchy of universes Typei, each being an inhabitant
of the next one.

` Prop: Type0 (B.5)
` Typei: Typei+1 (B.6)

P : Prop ` P : Typei (B.7)
T : Typei ` T : Typej when i < j (B.8)

If the subscript i of Type is irrelevant, it will not be shown.

B.4 Products

The type Π(A;B) is thought of as the product of all Bx for x:A; see rule (B.4) for
introducing its elements.

In the following rules exponentiation of types is used, TA, which stands itself for a
product type Π(A; (:: T)). So we have ` (x :: t):TA when x:A ` t:T and x doesn’t
occur free in T . Rule (B.14) (extensionality) refers to the equality predicate described
in section B.8.

A: Typei; B: TypeA
i ` Π(A;B): Typei (B.9)

A: Typei; P : PropA ` ∀(A;P): Prop (B.10)
f : Π(A;P) ` hyp f :∀(A;P) (B.11)

f : Π(A;B); a:A ` fa:Ba (B.12)
p:∀(A;P); a:A ` app(p, a):Pa (B.13)

f, g: Π(A;B); h:∀(A; (x :: fx =Bx gx)) ` h: (f =Π(A;B) g) (B.14)

130 APPENDIX B. ADAM’S TYPE THEORY

A pair (A;B) as in (B.9) is called a family of types. We define the following alternative
notations. In the first one, variable v may occur in B.

(v:A :: B) := (A; (v :: B))
BA := Π(:A :: B)

P ⇒ Q := ∀(:P :: Q)

B.5 Sums

In the rules for strong Σ, we use a primitive constant Σ elim rather than operations fst
and snd.

A: Typei; B: TypeA
i ` Σ(A;B): Typei (B.15)

B: TypeA; a:A; b:Ba ` (a; b): Σ(A;B) (B.16)
T : TypeΣ(A;B); t: Π(x:A :: Π(y:Bx :: T (x; y))) ` Σ elim t: Π(Σ(A;B);T)(B.17)

Thus, the expression ‘Σ elim(x :: (y :: txy))’ denotes the function that maps (x; y) to txy.
A pattern-matching notation suggestive of this is given in section B.11.

B.6 Finite types

Any Nat n denotes a type with n elements, named by the Nat’s 0 till n− 1.

` n: Typei (B.18)
` k:n where k < n (B.19)

T : Typen; ti:T (i) for i < n ` (t0, . . . , tn−1): Π(n;T) (B.20)

Sequences of arbitrary length are denoted using angle brackets. This allows elegant
definitions of finite products and sums:

〈t0, . . . , tn−1〉 := (n; (t0, . . . , tn−1))
B0 ×B1 := Π〈B0, B1〉
B0 +B1 := Σ〈B0, B1〉
Q0 ∧Q1 := ∀〈Q0, Q1〉

B.7 Naturals

The rules for naturals are exactly as in ADAM , paragraph 2.9.1.

` IN: Typei (B.21)
` 0: IN (B.22)

x: IN ` sx: IN (B.23)
T : TypeIN; b:T (0); t: Π(x: IN :: Π(h:Tx :: T (sx))) ` IN rec(b, t): Π(IN;T)(B.24)

B.8. EQUALITY 131

B.8 Equality

Rules for the equality predicate are the following.

a:A; b:A ` (a =A b): Prop (B.25)
a:A ` eq: (a =A a) (B.26)

: (A =Type B); a:A ` a:B (B.27)
P,Q: Prop; h: (P ⇒ Q) ∧ (Q⇒ P) ` h: (P =Prop Q) (B.28)

P : Prop; p, q:P ` eq: (p =P q) (B.29)

This simple version of type conversion (B.27) has a drawback: correct terms need not
normalize, because in an inconsistent context any two types can be proven equal. One
has, for example,

A: Type; h: (A =Type (A→ A)) ` (x :: xx)(x :: xx):A .

An explicit conversion construct, as suggested in C.3.2, third point, would prevent this.
In any case, terms that are correct in the empty context reduce to head normal form.

There must be an equality rule for all language constructs, stating that two terms
constructed from equal subterms are equal. We do not list all these, but one simple and
two more complicated cases are:

a =A a′; b =B b′ ` (a, b) =A×B (a′, b′) (B.30)
A =Type A

′; B =TypeA B′ ` Π(A;B) =Type Π(A′;B′) (B.31)

A =Type A
′; (a, b) =A2 (a′, b′) ` (a =A b) =Prop (a′ =A′ b′) (B.32)

This suffices to derive symmetry and transitivity of equality. But rules like (B.31) have
a snag: the type of B′: TypeA′

has to be converted via (B.27) to get B′: TypeA. An
alternative would be to use an equality predicate indexed by two type expressions, which
have to denote equal types, thus:

:A = B; a:A; b:B ` (a A=B b): Prop

B.9 Existential propositions

As discussed in appendix C, we add strong existential propositions and the axiom of
choice. For A a type, ∃A means ‘A is inhabited’.

A: Typei ` ∃A: Prop (B.33)
a:A ` ∃ in a:∃A (B.34)

T : Type∃A;
t: Π(x:A :: T (∃ inx));
d:∀(x, y:A :: tx = ty) ` ∃ elim(t): Π(∃A;T) (B.35)

B: TypeA; p:∀(x:A :: ∃(Bx)) ` ac p:∃Π(A;B) (B.36)

132 APPENDIX B. ADAM’S TYPE THEORY

Note: in appendix C we write ∃ elim(t|; d), rather than ∃ elim t, to make the proof
obligation d explicit.

As discussed in C.3.2, we cannot use a reduction rule ∃ elim(t)(∃ in a) => ta. Rather
we add an equation:

` eq: (∃ elim(t)(∃ in a) = ta) (B.37)

B.10 Semantics

We wish to assign a simple set-theoretical semantics [[t]]σ to terms t (under valuation
σ), such that any function f :A → B simply denotes the set of pairs {x:∈ [[A]]σ ::
〈x, [[f]]σ.x〉 }. Unfortunately, an abstraction (v :: t) doesn’t show up the type A of its
bound variable v. Therefore we introduce annotated terms, where abstractions (v ::A t)
are annotated with this type A. Annotated terms are given by:

ATerm ::= Var

| Const(ATerm,∗)
| (Var ::ATerm ATerm) .

For any Term t, we define its class of annotations, a subclass of Aterm.

• The only annotation of a variable v is v;

• An annotation of c(t0, . . . , tn−1) is c(t′0, . . . , t
′
n−1) where each t′i is an annotation of

ti.

• An annotation of an abstraction (v :: t) is (v ::A′ t′) where A′ is any ATerm and t′

is an annotation of t.

All propositions denote subsets of {∅}. In particular, we will have [[False]]σ = ∅ and
[[True]]σ = {∅}, and all terms that denote proofs are mapped onto the empty set ∅. Thus,
our semantics pays no respect to the computational contents of proofs.

For any Const c and any list of sets s̄ of length arity of c, we define a set [[c]](s̄).
Empty argument lists are omitted. Note that we use the set encoding of section A.2.

[[Prop]] := P{∅}
[[∀]](〈A,P 〉) := { ∅ |: ∀x:∈ A :: ∅ ∈ P (x)}

[[∃]](A) := { ∅ |: ∃x:∈ A :: True}
[[hyp]](x), [[app]](x, y), [[∃ in]](x), [[ac]](x), [[eq]]

:= ∅
[[∃ elim]](t) := {p:∈ t :: 〈∅, snd p〉 }

[[Π]](〈A,B〉) := { f :∈ (
⋃

codB)A |: ∀x:∈ A :: f(x) ∈ B(x)}
[[@]](f, a) := f(a)

[[Σ]](〈A,B〉) := {x:∈ A; y:∈ B(x) :: 〈x, y〉 }
[[;]](a, b) := 〈a, b〉

[[Σ elim]](t) := {x:∈ dom t; y:∈ dom t(x) :: 〈〈x, y〉, t(x)(y)〉 }

B.10. SEMANTICS 133

[[n]] := n

[[,n]](t0, . . . , tn−1) := {〈0, t0〉, . . . , 〈n− 1, tn−1〉}
[[IN]] := ω

[[s]] := {x:∈ ω :: 〈x, x+ 1〉 }
[[IN rec]](b, t) :=

⋂
(f :⊆ ω × dom t(0) |:
〈0, b〉 ∈ f ∧ ∀〈x, y〉:∈ f :: 〈x+ 1, t(x)(y)〉 ∈ f)

[[=]](A) := {x, x′:∈ A :: 〈[[,2]](x, x′), { ∅ |: x = x′}〉 }
[[Typei]] :=

⋂
(U |: ω ⊆ U ∧ [[IN]], [[Prop]] ∈ U

∧ ∀A:∈ U ; B:∈ UA :: [[Π]]〈A,B〉, [[Σ]]〈A,B〉 ∈ U
∧ ∀j:< i :: [[Typej]] ∈ U)

The last line gives an iterated inductive definition of [[Typei]] of the form
⋂

(U |: F.U ⊆
U) for a monotonic functor F that is not bounded in the sense of section 8.1. Existence
of such an inductive set cannot be shown in ZFC, for [[Type0]] yields already a model of
ZFC (see section A.5). So this requires a strengthening of ZFC, that allows one to give
inductive set definitions with clauses of the form

∀A:∈ U ; B:∈ UA :: φ(A;B) ∈ U .

We think a suitable large-cardinal axiom will do.
Substituting a special constant ω for i with j < ω for all Nat j, the resulting set

D := [[Typeω]] may serve to model types, and E :=
⋃
D to model values.

A valuation is a partial function σ: Var → E. The semantics of an annotated term t
assigns to any valuation σ a set [[t]]σ ∈ E:

[[v]]σ := σ(v) for Var v

[[c(t0, . . . , tn−1)]]σ := [[c]]([[t0]]σ, . . . , [[tn−1]]σ)
[[(v ::A b)]]σ := {x:∈ [[A]]σ :: 〈x, [[b]](σ | v 7→ x)〉 }

The semantics of an annotated context Γ′ is a set [[Γ′]] of valuations:

[[{}]] := {∅}
[[Γ′; v:T ′]] := {σ:∈ [[Γ′]]; x:∈ [[T ′]]σ :: (σ | v 7→ x) }

We define an annotated term to be correct in an annotated context Γ′, as follows.

• Any variable v is correct in Γ′

• A term c(t0, . . . , tn−1) is correct in Γ′ if each ti is correct in Γ′ and moreover, if c

is @ and n is 2, then
∀σ:∈ [[Γ′]] :: [[t1]]σ ∈ dom[[t0]]σ

and if c is ∀, Π, or Σ, and n is 1, then

∀σ:∈ [[Γ′]] :: fst[[t0]]σ = dom snd[[t0]]σ

134 APPENDIX B. ADAM’S TYPE THEORY

• An abstraction (v ::A b) is correct in Γ′ if b is correct in Γ′; v:A

Validity is defined by:

Γ′ |= t′:T ′ := ∀σ:∈ [[Γ′]] :: [[t′]]σ ∈ [[T ′]]σ
Γ′ |= s′ = t′ := ∀σ:∈ [[Γ′]] :: [[s′]]σ = [[t′]]σ

Now, we hope to have a theorem like the following, but the details of assigning annota-
tions are tricky:

Conjecture (Soundness).

1. If Γ ` T : Type, and Γ′, T ′ are correct annotations of Γ, T , and if s == t and s′, t′

are correct annotations of s, t in Γ′ and Γ′ |= s′, t′:T ′, then Γ′ |= s′ = t′

2. If Γ ` t:T , then for any correct annotations Γ′, T ′ of Γ, T , there is a correct
annotation t′ of t such that Γ′ |= t′:T ′

B.11 More derived notations

B.11.1 Σ-elimination. One may use the following notations for elimination on a
Σ-type.

((x; y) :: txy) := Σ elim(x :: (y :: txy))
fst := ((x; y) :: x)

snd := ((x; y) :: y)

B.11.2 Subtypes. When A is a type, and P a predicate on A, then Σ(A;P) repre-
sents the type of all a:A that come with a proof p:Pa. As all proofs of a proposition are
equal, we have that (a; p) = (a′; p′) just when a = a′. This type gets a special notation.

{x:A |: Px} := Σ(x:A :: Px)
(a|; p) := (a; p)

One may read ‘|:’ as “such that” and ‘|;’ as “because of”. Both bind weaker than ‘::’.
As the proof component p of (a|; p) is irrelevant, we sometimes write just a.

135

Appendix C

Proof elimination in Type Theory

When Type Theory is to be used as a fully fledged foundation of mathematics, presence
of powersets, or equivalently impredicative propositions, is indispensable. We remark
that, e.g., the ‘iota’ or Frege’s description operator denoting the element of a one-element
set is not representable in current type theories. We propose an existential quantifier
with a new elimination rule, and show how the iota operator and quotient types are then
representable. We use a version of type theory that unifies finite and infinite products
and sums in a particularly elegant way.

This material was distributed earlier, together with appendix B, as report [15].

C.1 Introduction

The basic thought of Brouwer’s intuitionistic logic was, a proposition should only be
acknowledged as true if we have a construction validating its truth. Martin-Löf’s In-
tuitionistic Type Theory (ITT) [56] was developed to clarify this: a proposition was
identified with its set of constructions, called a type, and proofs were identified with
constructions. From a construction for the existential statement ∃(x:A :: Bx), which
is identified in ITT with the generalized sum type Σ(x:A :: Bx), one can construct the
witnessing element of A by the function fst: Σ(x:A :: Bx)→ A.1

ITT does not allow impredicative quantification; it makes no sense to the orthodox
intuitionist to quantify over the class of all propositions before this class is completed. If
Type0 is a universe of types, then types involving Type0 cannot reside in Type0 itself.

In traditional set theory, on the other hand, even in a constructive version, one can
construct the powerset PT of any set T . This is a set whose elements are definable
by arbitrary predicates on T , even those involving quantification over the powerset PT
itself. Thus, the class of propositions is considered to be understood a priori.

Coquand and Huet introduced a type theory, the Calculus of Constructions (CC) [21],
that has a type of propositions (Prop, residing inside Type0) that allows impredicative

1Subscripts stand for variables that may occur in an expression. The symbol ’::’ separates typed
bound variables from the body of a quantification. We have (x :: bx): Π(x: A :: Bx).

136 APPENDIX C. PROOF ELIMINATION IN TYPE THEORY

quantification. The system has no Σ-constructor. While Luo [48] added (strong) Σ for
the higher type universes, it cannot be consistently added for Prop [43]. (Propositions
in Prop are normally interpreted as sets that have at most one element, but Σ builds
types with more elements.) One can only define weak existential quantification:

∃w(x:A :: Px) := ∀(X: Prop :: ∀(x:A :: Px ⇒ X)⇒ X)

From a proof of such an existential proposition one cannot construct the witnessing x:A
inside the system, even if this witness is provably unique. Formally, there is no function
f :∃w(x:A :: Px) → A, and not even a function f :∃w!(x:A :: Px) → A, as CC does not
allow object construction using proof information. Addition of the latter f would be
perfectly valid in the standard set interpretation.

Now, our purpose is to develop type theory into a complete alternative to traditional
set theory as a foundation of mathematics. It is not our purpose to extract programs
from constructions by omitting redundant proof information. Any kind of reasoning
representable in set theory (but not specific to sets) should be representable in our type
theory. This involves:

• An impredicative universe of propositions (Prop) should be present, so that pow-
ertypes are definable: PT := (T → Prop). This makes a type theory into a topos.
Two propositions are equal if they are equivalent. Two proofs of the same propo-
sition are always equal. We will use some appropriate set notations, particularly
‘∈’ for subset membership.

• Extra rules for equality types should be present, including type conversion and
extensionality. This is standard in ITT, not in CC. A readable notation for fully
formal equality proofs is missing. We will use a semi-formal notation, which should
guarantee the existence of a proof object.

• For any ordinarily definable object, there should be an expression in type theory
denoting it. Equivalently, function comprehension should be possible: from a proof
that a relation R:P(A×B) is single valued, the corresponding function f :A→ B
should be constructible.

In this paper we take a type theory that satisfies the first two requirements, and study the
last point. Traditionally, a (constructive) object definition may consist of a description,
being a predicate together with a (constructive) proof that the predicate is satisfied by
one and only one object. Gottlob Frege [31, § 11] introduced a description operator ‘ι’
(iota) into predicate calculus to denote this object. In a type theory where propositions
are distinguished from types, like CC, one cannot obtain the object from the proof.

Let T be the subtype of objects satisfying the predicate. Assume we have

p:∃x:T :: ∀y:T :: x =T y .

We need an expression that extracts the object, say ιT (p):T . Rather than adding primi-
tive rules for ι, we propose an equivalent principle in section C.3 for making use of proof
information in object expressions.

C.2. THE BASIC SYSTEM 137

An essentially equivalent principle is proposed by Pavlović in [71, par. 32], but not
worked out. The ‘new set type’ {x : A||Px} proposed by Constable [19, section 3.1]
for Nuprl is based on the same idea too, but doesn’t really increase the strength of the
system: as Nuprl has no impredicative propositions, one can use a Σ-type modulo the
appropriate equivalence.

C.2 The basic system

In this paper, we use the variant of type theory described in appendix B, which includes
impredicative propositions, a hierarchy of universes, strong sums for non-propositions,
finite types and equality types à la Martin-Löf.

Although proofs of propositions always have a proof expression, we won’t often show
this expression. A really practical formal language for proofs would be much more
elaborate. Rather, we use the usual informal language to describe proofs.

In our expressions we will also use goal variables, starting with a question mark like
‘?1’, and usually followed by a typing. These represent subexpressions to be defined
later on. All names that are visible in the context of a goal variable may be used in its
definition as well.

C.3 Strong existence

C.3.1 New rules

We introduce a new existential quantifier with a stronger elimination rule than one has
for ∃w as defined in section C.1. Actually, we define ∃ not as a quantifier, but as a
constructor operating on types, see rule (C.1). The quantifier is then recovered via the
subset type by

∃(A;P) := ∃{x:A |: Px} .

The rules are suggested by viewing the proposition ∃T as the quotient type of T
modulo the equivalence relation that identifies everything in T . This quotient type
contains at most one equivalence class indeed.

A: Type ` ∃A: Prop (C.1)
a:A ` ∃ in a:∃A (C.2)

T : Type∃A;
t: Π(x:A :: T (∃ inx));
d:∀x, y:A :: tx = ty ` ∃ elim(t|; d): Π(∃A;T) (C.3)

Note that d is not always shown. The expected reduction rule is

∃ elim(t|; d)(∃ in a) => (ta) , (C.4)

but see the next subsection.

138 APPENDIX C. PROOF ELIMINATION IN TYPE THEORY

C.3.2 Difficulties with reduction to canonical form

Looking at (C.4), we see that in order to reduce an object expression ‘(∃ elim t)(p)’ one
must obtain the canonical form of the proof expression p. Therefore, if we wish to
preserve the attractive property of constructive type theory that any closed expression
of some type is reducible to head canonical form for that type, we must take care of the
following points.

• Proof information is no longer irrelevant and cannot be removed from some lan-
guage constructs. For example, objects of a subtype {x:A |: Px} cannot be just
single a:A for which there exists a proof p:Pa, but must really be pairs (a|; p).

• There should be reduction rules for all noncanonical constructs for proof objects.
For example, if we have the axiom of choice (which holds trivially in pure ITT,
without Prop, by the identification of proofs and constructions),

B: TypeA; p:∀(x:A :: ∃(Bx)) ` ac p:∃Π(A;B) , (C.5)

then we must also add a reduction rule to the effect that

ac(x :: ∃ in bx) => ∃ in(x :: bx) . (C.6)

Here we encounter a serious problem: not all p:∀(x:A :: ∃Bx) reduce to the form
(x :: ∃ in bx). An ad-hoc solution is to make both ∃ in and ac implicit, so that
reduction rule (C.6) becomes void. An alternative is to use an untyped ∃ out, and
reduction rules:

ac p => ∃ in(x :: ∃ out(px))
∃ out(∃ in a) => a

• Rule (B.28) says that equivalent propositions are equal. However, a canonical proof
term of a proposition need not be a canonical term of an equivalent proposition.
Therefore, the type-conversion rule (B.27) has to specify a conversion on term a
too. The rule might look like

e: (A =Type B); a:A ` (e ·> a):B

together with a bunch of reduction rules for all constructs that prove equality
between types.

In short, the system appears to become rather ugly.
We aim for elegance and therefore choose to part with this property of reduction to

canonical form. However, as the calculus is still constructive, one may devise a procedure
to extract from a given proof a separate term containing its computational content.
Several implemented type theories, including Nuprl and the Calculus of Constructions,
do already use such a procedure.

C.4. APPLICATIONS 139

C.4 Applications

C.4.1 Iota

C.4.1 From ‘exists’ to ‘iota’. Now, using ∃ elim we can define ι, the construct
that, from a proof that a type has a unique element, constructs that element. First,
!A is the subtype that, if A has a unique element, contains that single element, and is
empty otherwise. Next ι is defined by a ∃ elim on fst: !A→ A, with a very simple proof
that fst does always yield the same result on !A.

!(A: Type) := {x:A |: ∀y:A :: x =A y}
ιA:∃!A→ A := ∃ elim(fst |; (x|; p), (y|; q): !A :: py(:x = y))

C.4.2 From ‘iota’ to ‘exists’. The converse is also possible: we can derive (C.1–
C.3) with ∃ defined as ∃w when we assume ιA:∃!A→ A.

∃(A: Type) := ∀(X: Prop :: ∀(x:A :: X)⇒ X)
∃ in(x:A) := (X :: (h :: hx))
∃ elim(t|; d) := (p:∃A :: ?1:Tp)

The context of the goal ?1 is

t: Π(x:A :: T (∃ inx));
d:∀x, y:A :: tx = ty;
p:∃A .

To solve ?1:Tp, we define S to be the subtype containing all tx for x:A,

S := {u:Tp |: ∃x:A :: u = tx} .

Such a type might be noted as {x:A :: tx}. For x:A let six:S := (tx|;∃ in(x|; eq)) be
the corresponding S-element.

Using p and d we can prove that S has a unique element:

s:∃!S := p(∃!S)(x:A :: ∃ in(six |; (y|; e):S :: ?2: tx = y)) .

The definition of ?2, using d and e:∃(x:A :: y = tx), is left to the reader. Then we take

?1 := fst(ιSs) .

C.4.2 Quotient types

Another application arises with quotient types. These are sometimes added to type
theory as primitives [18], but with the strong-existence construct we can define them in
much the same way as they are defined in set theory. Furthermore, there is a construction
dealing with quotient types that should follow from the rules, but which is not derivable
in ordinary type theory.

140 APPENDIX C. PROOF ELIMINATION IN TYPE THEORY

C.4.3 Specification. We wish quotient types to satisfy the following rules:

A: Type; R:PA2 ` A//R: Type (C.7)
a:A ` // inR a:A//R (C.8)

x, y:A; r: (x, y) ∈ R ` // inR x = // inR y (C.9)

T : TypeA//R ;
t: Π(x:A :: T (// inx));
d:∀(x, y):∈ R :: tx = ty ` // elim(t|; d): Π(A//R; T) (C.10)
// elim(t |; d)(// in a) => ta (C.11)

A typing ‘(x, y):∈ R’ abbreviates x, y:A; r: (x, y) ∈ R. Note that it is not necessary
to require that R be an equivalence relation. Note also that the rules for ∃ are exactly
those for // with R instantiated to the total relation ((x, y) :: True), except that ∃A is a
proposition rather than only a type.

C.4.4 Implementation. We present a definition of quotient types satisfying the
specification above. It corresponds to the normal set-theoretic construction: A//R is
the subtype of those subsets of A that are equivalence classes of some x:A, where the
equivalence class of x is the least subset of A that contains x and is closed under R.

Let Equiv(Q:PA2) be the proposition stating that Q is an equivalence relation. First
we define the infix relation ≡R, read ‘equivalent modulo R’ as the least equivalence
containing R. The so-called ‘section’ (x ≡R):PA stands for the predicate (or subset)
(y :: x ≡R y), which is the equivalence class of x.

(≡R) :=
⋂

(Q:PA2 |: R ⊆ Q ∧ EquivQ)
A//R := {P :PA |: ∃x:A :: P = (x ≡R) } (= {x:A :: (x ≡R)})

// inR(x:A) := ((x ≡R) |;∃ in(x|; eq))
// elim(t |; d) := ((P |; e) :: ∃ elim((x|; p) :: (?1)tx |; (x|; p), (y|; q) :: ?2: tx = ty) e)

The goal variables in this last definition still have to be filled in. From the required
typing (C.10) of // elim one can deduce that the types of the bound variables are:

t: Π(x:A :: T (// inx))
d:∀(x, y):∈ R :: tx = ty
P :PA
e:∃x:A :: P = (x ≡R)
x:A; p: (P = (x ≡R))
y:A; q: (P = (y ≡R))

So the subexpression tx has type T (// inR x), while type T (P |; e) is required. A type
conversion can be inserted at ?1, for:

// inR x

= ((x ≡R) |;∃ in(x|; eq)) {definition // in}
= (P |; e) {by p: (P = (x ≡R)), and proof equality}

C.4. APPLICATIONS 141

Next, a proof for tx = ty has to be inserted at ?2. Remark that we have (x ≡R) = (y ≡R)
by assumptions p and q, hence x ≡R y follows from y ≡R y.

tx = ty

⇐ ∀x, y:A :: (x ≡R y ⇒ tz = ty) {because x ≡R y}
⇔ (≡R) ⊆ Q {taking Q := ((x, y) :: tx = ty) }
⇐ R ⊆ Q ∧ EquivQ {definition ≡R}
⇔ True {by d, and Q being an equivalence}

This completes the definition of // elim.
Finally, (C.9) is derivable:

// inR x = // inR y

⇐ (x ≡R) = (y ≡R) {definition // in, and proof equality}
⇔ ∀z:A :: (x ≡R z) = (y ≡R z) {extensionality}
⇐ x ≡R y {≡R is an equivalence}
⇐ (x, y) ∈ R {R ⊆ (≡R)}

C.4.5 A problem with quotients. Let’s return to the basic system, without our
strong existence rules. Rules for quotient types (C.7–C.11) may be (and have been)
added as primitive rules. We present a specification that cannot be solved by these
rules, presumably. The rules from section C.3, including the axiom of choice (C.5), do
solve it.

Assume we have a quotient type A//R, where R is an equivalence relation, and a
function f on infinite A-tuples that respects R:

A: Type; R:PA2; EquivR

f :Aω → A

u, v:Aω ` ∀(i:ω :: (ui, vi) ∈ R)⇒ (fu, fv) ∈ R

(In relational notation, the latter property may be expressed as (f, f) ∈ Rω → R.)
The problem is to construct a corresponding function on A//R:

f ′: (A//R)ω → A//R such that ∀u:Aω :: f ′(i :: // inui) = // in(fu)

We would naturally expect this to be possible as follows. Suppose we have a tuple
x: (A//R)ω. Then:
1. For any i:ω there exists a u:A with xi = // inu.
2. Thus there exists, by the axiom of choice, a tuple y = (i :: yi) with xi = // in yi.
3. For such a y, one has // in(fy):A//R.
4. The property of f says that the value of // in(fy):A//R is independent of the partic-
ular choice of the yi — had we chosen other values zi with xi = // in zi, then would any
zi be in the same equivalence class as yi, so (yi, zi) ∈ R for all i, and hence (fy, fz) ∈ R,
so // in(fy) = // in(fz).
5. Thus, we can define f ′(x) := // in(fy) where y is chosen as in step 2.

142 APPENDIX C. PROOF ELIMINATION IN TYPE THEORY

When we try to formalize this, we get stuck. The problem is that the quotient
elimination rule (C.10) eliminates only a single element at a time. Repeated application
works for a finite number of elements, but we have to eliminate an infinite number.

One might replace (C.10) with a stronger rule, but that would miss the point as the
present rules already determine A//R uniquely, up to isomorphism.

C.4.6 Our solution. We show how the ∃-rules together with the axiom of choice
(C.5) solve the problem.

Assume x: (A//R)ω. We make the following steps, mirroring the proof above.

s1:∀x:A//R :: ∃u:A :: x = // inu

:= // elim(u :: ∃ in(u|; eq))
s2:∃Π(i:ω :: {u:A |: xi = // inu})

:= ac(i :: s1(xi))
s3: Π(i:ω :: {u:A |: xi = // inu})→ A//R

:= (y :: // in(f(i :: fst yi)))
s4:∀(y, z: Π(i:ω :: {u:A |: xi = // inu}) :: s3(y) = s3(z))

:= ?1
s5:A//R := s2\ ∃ elim(s3 |; s4)

The skipped proof ?1 runs as follows, for given y, z:

s3(y) = s3(z)
⇐ (f(i :: fst yi), f(i :: fst zi)) ∈ R {by (C.9)}
⇐ ∀i:ω :: (fst yi, fst zi) ∈ R {for f respects R}
⇐ ∀i :: ∀(u|; e), (v|; e′): {u:A |: xi = // inu} :: (u, v) ∈ R {Type of yi, zi}
⇐ ∀u, v:A; // inu = // in v :: (u, v) ∈ R

To prove this last proposition, assuming // inu = // in v:

(u, v) ∈ R
⇔ // inu\ // elim(u :: (u, v) ∈ R |; ?2) {by //-reduction and ?2 below}
⇔ // in v\ // elim(u :: (u, v) ∈ R |; ?2) {assumption}
⇔ (v, v) ∈ R {by //-reduction}
⇔ True {R is reflexive}

Finally, ?2:∀(u, u′):∈ R :: ((u, v) ∈ R) = ((u′, v) ∈ R) is solvable by symmetry and
transitivity of R, and propositions being equal when they are equivalent.

C.4.3 Inductive types

In set theory, the existence of a single infinite set ω suffices to construct all inductive
sets, for example by the construction of Kerkhoff [45]. The new rules allow us to mirror
this construction in our strong type theory, as is shown in section 8.2 of this thesis.

C.5. CONCLUSION 143

C.5 Conclusion

Set theory is embeddable in type theory, by defining a big type Set: Type1 and a relation
(∈):PSet2 such that all ZF axioms are formally derivable. Such a model is defined in
section A.5. This implies that type theory is stronger than ZF set theory (because of
the extra universes), but only at the level of first order propositions about sets.

However, as to construct objects of other types, or to construct new types (within
the universe Type0), there are constructions possible in set theory that cannot be done
in current type theories. We have shown how the addition of a rule for strong proof
elimination fills this deficiency. Some type constructors (quotients, inductive types) that
have been proposed as primitives become derivable.

We have seen that, if one wishes to use the logic of type theory as a reduction
system, our new principle resists the idea of proof irrelevance (section C.3.2). To avoid
complications in the proof system, we suggested to distinguish terms as they occur in
the proof system from reducible terms as they may be extracted from proofs.

144

Appendix D

Naturality of Polymorphism

From the type of a polymorphic object we derive a general uniformity theorem that
the object must satisfy. We use a scheme for arbitrary inductive type constructors.
Applications include natural and dinatural transformations, promotion and induction
theorems. We employed the theorem in section 6.3 to prove equivalence between different
recursion operators.

The issue was suggested to us by J.G. Hughes of Glasgow University who mentioned
property (D.1) during a lecture in Groningen in October 1988. It was discussed in
Backhouse’s research club which led to our theorem. After sending Hughes an earlier
version of our notes we received the draft of a paper [83] from Philip Wadler who derives
the same main theorem as we do but in a more formal setting, and gives many promotion-
like applications. His paper gave us some entries to the literature.

This is a revision of our report [14]. The notation has been partly adapted to this
thesis, and the proofs of theorems D.2 and D.4 have been simplified through replacing
inductive arguments by additional applications of the naturality theorem.

D.1 Introduction

Objects of a parametric polymorphic type in a polymorphic functional language like
Miranda or Martin-Löf-like systems enjoy the property that instantiations to different
types must have a similar behavior. To state this specifically, we use greek letters as
type variables, and T [α] stands for a type expression possibly containing free occurrences
of α. Stating t:T [α] means that term t has polymorphic type T [α] (in some implicit
context), and hence t:T [A] for any particular type A. Such instances are sometimes
written with a subscript for clarity: tA:T [A]. Thus the quantification ∀α is implicit.
Some type expressions T [α] are functorial in α. I.e., there is a polymorphic expression
T [p]:T [α] → T [β] when p:α → β, such that T [IA] = IT [A] and T [p ◦̄ q] = T [p] ◦̄ T [q],
where I is the identity function and (◦̄) denotes forward function composition. It has
often been observed (e.g. [76]) that polymorphic functions f :U [α]→ V [α], where U , V
are functorial, must be natural transformations:

For any p:A→ A′, one has fA ◦̄ V [p] = U [p] ◦̄ fA′ : U [A]→ V [A′] (D.1)

D.1. INTRODUCTION 145

Illustration:
U [A] V [A]-fA

? ?
U [p] V [p]

U [A′] V [A′]-fA′

For example, any function rev:α∗ → α∗, where α∗ is the type of lists over α, must satisfy
for p:A→ A′:

revA ◦̄p∗ = p∗ ◦̄ revA′

Unfortunately, type expression (U [α] → V [α]) is generally not functorial itself, be-
cause (→) is contravariant in its first argument. One can extend statement (D.1) to
dinatural transformations in the sense of Mac Lane [51, pp. 214-218], but such a state-
ment is still not provable by induction on the derivation of type correctness of f . In this
appendix we develop a generalization to arbitrary types that is provable for all lambda-
definable objects of some type. The generalization allows one to derive many properties
of polymorphic objects from their type alone, properties which are conventionally proven
by induction using the definition of the object, for example “promotion” theorems on
functions like:

foldr: (α× β → β)× β → (α∗ → β)

This promotion theorem says for p:A→ A′, q:B → B′, c:A×B → B and c′:A′×B′ →
B′, if

c ◦̄ q = (p× q) ◦̄ c′ : A×B → B′

then:
foldr(c, b) ◦̄ q = p∗ ◦̄ foldr(c′, qb) : A∗ → B′

If one identifies natural numbers with objects of polymorphic type (α→ α)→ (α→ α),
one can even derive Peano’s induction axiom.

The essential theorem is in fact Reynolds’ abstraction theorem [75]. (The inconsis-
tency in his modelling of polymorphic objects as set-theoretic functions on the class of
all types is rather irrelevant.) The basic idea had already been given by Plotkin [74], and
a more complicated variant is formed by the logical relations of Mitchell and Meyer [62].
It was generally regarded as merely a representation independence theorem for datatype
implementations, while its implications for deriving properties of functional programs
seem to have been unrecognized at that time. Quite different approaches are used in
Bainbridge, Freyd et al. [9, 32], based on dinatural transformations in a category called
LIN of certain coherent spaces and linear maps, and in Carboni et al. [17] where the so-
called Realizability Universe is constructed. Both approaches appear to be conceptually
far more complicated than Reynolds’. There is also a paper by John Gray [36] which
deals only with naturality of some particular operations like currying.

Our contribution consists of the inclusion of arbitrary initial types, some applications
of a different kind than Wadler’s applications, a very attractive proof of the dinaturality
property, and a proof of equivalence between two different recursion operators. We
expect the theorem to hold for generalized typed lambda calculus too, but leave this to
further research.

146 APPENDIX D. NATURALITY OF POLYMORPHISM

Survey. In section D.2 we shall define a typed lambda calculus, and in D.3 we show how
type constructors correspond to relation constructors. In D.4 we derive the main natu-
rality theorem; in D.5 we give some simple applications; in D.6 we derive a dinaturality
result which could not be proven directly. In D.7 we add second-order quantification
and derive mathematical induction for the encoded natural numbers. In D.8 we see how
polymorphism over types that support certain operations can be treated. For a final ap-
plication, proving the equivalence between categorical recursion and Mendler recursion,
we refer to theorem 6.4 in this thesis.

D.2 Polymorphic typed lambda calculus

The proof of the naturality theorem is by induction on the derivation of the type of an
object. So we need to specify the derivation rules of the polymorphic functional language
that we shall use. This language may be either a programming language with fixpoints,
where the semantic domain of a type is a cpo, or a purely constructive language where
types are flat sets and all functions are total.

We will use typed lambda calculus. The syntax for types and for terms is:

T ::= α | (T → T) | ΘT ∗ .

t ::= x | (t t) | λx.t | θj | Θ elim(t∗) .

Besides type variables α, we have (→) as the function type constructor, and an un-
specified number of other type constructors Θ, each one constructing from a sequence
of types U of some fixed length the least datatype that is closed under a number of
object constructors θj . Each constructor θj has a sequence of arguments of types
Fjl[U,ΘU]. The types Fjl[α, β] must be functorial in β, so for q:B → B′ we have
Fjl[A, q]:Fjl[A,B] → Fjl[A,B′]. The functions Fjl[A, q] are required to preserve rela-
tions too (D.3), but this is guaranteed by naturality. We use a categorical elimination
construct Θ elim (compare Hagino [37]), from which other eliminators may be defined.

Note that we often write a single meta-variable, like ‘U ’, to stand for a sequence,
‘U0, . . . , Un−1’. Furthermore, a type expression ‘U → V ’, where U is a sequence, stands
for ‘U0 → · · · (Un−1 → V)’.

The derivability judgement ‘t has type T under the assumptions xj :Sj ’ is noted
x:S ` t:T , and is generated by the following rules:

x:S ` xj :Sj {Var-intro}
x:S ` f :U → V ; x:S ` u:U ⇒ x:S ` (f u):V {(→)-elim}

x:S, y:U ` v:V ⇒ x:S ` λy.v:U → V {(→)-intro}
x:S ` θj :Fj [U,ΘU]→ ΘU {Θ-intro}

x:S ` vj :Fj [U, V]→ V (each j) ⇒ x:S ` Θ elim(v): ΘU → V {Θ-elim}

There is an untyped congruence relation (==) on terms, called conversion, which is
generated by:

(λy.v u) == v[y := u]
(Θ elim(v) (θjd)) == (vj (Fj [α,Θ elim(v)] d))

D.3. TURNING TYPE CONSTRUCTORS INTO RELATION CONSTRUCTORS147

We will define a typed extensional equivalence in section D.3. In section D.7 we will
add second-order quantification (in terms of which initial and final datatypes can be
defined).

Note that we derive the theorem using only lambda terms, without any reference to
models. One can derive the same results as we do in an arbitrary model, see Wadler [83].

D.3 Turning type constructors into relation constructors

Observe that, although we cannot extend a function p from A to A′ to a function from
(U [A] → V [A]) to (U [A′] → V [A′]), property (D.1) suggests us to consider the binary
relation between f :U [A] → V [A] and f ′:U [A′] → V [A′] that is given by f ◦̄ V [p] =
U [p] ◦̄ f ′. We will use this observation to extend a relation (instead of a function)
between A and A′ to one between T [A] and T [A′].

Definition. A relation R:⊆ A×A′ is a set of pairs of terms of types A and A′, taken
modulo conversion. (Had we used a programming language permitting the construction
of non-terminating programs then we would use elements of the corresponding cpo’s and
R would be required to be closed under directed limits: if V ⊆ R is (pairwise) directed,
then

⊔
V ∈ R. In particular, (⊥A,⊥A′) ∈ R as ⊥ is the limit of the empty set.)

While we use a colon (:) for typing, (∈) denotes relation-membership.

Definition. We will lift any type-constructor Θ to a relation-constructor such that for
any relation sequence R:⊆ A×A′ (i.e. Ri:⊆ Ai ×A′

i) one has:

ΘR:⊆ ΘA×ΘA′

First, as (A→ B) is the greatest type such that for f :A→ B one has ∀x:A . fx:B, we
define for Q:⊆ A×A′, R:⊆ B ×B′:

Q→ R := {(f, f ′): (A→ B)× (A′ → B′) |: ∀(x, x′):∈ Q . (fx, f ′x′) ∈ R} (D.2)

That is to say, the pair of functions should map related arguments to related results, as
illustrated by:

A B-f

o Q o R
A′ B′-f ′

If Θα is the initial type that is closed under object-constructors

θj :Fj [α,Θα]→ Θα

where each Fjl may be interpreted as a relation constructor that satisfies for relations
P,Q:⊆ ΘA×ΘA′, R:⊆ A×A′

∀(g, g′):∈ P → Q . (Fjl[A, g], Fjl[A′, g′]) ∈ Fjl[R,P]→ Fjl[R,Q] , (D.3)

and preserves identity, then we define ΘR to be the least relation that is closed under:

(θj , θj) ∈ Fj [R,ΘR]→ ΘR (D.4)

This makes sense since for P ⊆ Q we have Fj [R,P] ⊆ Fj [R,Q] by (D.3), taking g and
g′ to be the identity I.

148 APPENDIX D. NATURALITY OF POLYMORPHISM

Thus, the induction principle for ΘR is: if we wish to prove a predicate P for all
pairs in ΘR, then, considering P as a relation P :⊆ ΘA×ΘA′, we must show for each
j:

∀(d, d′):∈ Fj [R,P] . (θjd, θjd
′) ∈ P (D.5)

Check for example that all pairs in ΘR are convertible to (θjd, θjd
′) for some j and

(d, d′):∈ Fj [R,ΘR]

Example. Some relation-constructors corresponding to common type-constructors are

Q+R := {(x, x′):∈ Q :: (inl(x), inl(x′)) }
∪ {(y, y′):∈ R :: (inr(y), inr(y′)) }

Q×R := {(x, x′):∈ Q, (y, y′):∈ R :: ((x, y), (x′, y′)) }
Bool := {(true, true), (false, false)}

and IN and R∗ are the least relations such that:

IN = {(0, 0)} ∪ {(z, z′):∈ IN :: (s(z), s(z′)) }
R∗ = {(nil, nil)} ∪ {(x, x′):∈ R, (z, z′):∈ R∗ :: (x+< z, x′ +< z′) }

Now, for any type-expression T [α] containing only type-variables from the sequence
α, we have extended a relation-sequence R:⊆ A×A′ to a relation T [R]:⊆ T [A]× T [A′].
However, T is not necessarily a functor on relations, for it need not preserve composition.

Notice that the same schemes (D.2) and (D.4) describe extensional equality on A→
B and ΘA in terms of the equality on the A and B. Thus we can use the relational
interpretation of a type to define extensional equality:

Definition. Extensional equality on a closed type T is given by T [] as a relation:

(|= t = t′:T) := (t, t′) ∈ T []

We will often write just t = t′ rather than |= t = t′:T . We shall consider only relations
that are closed under this extensional equality. Equality for terms of types containing
variables will be defined in the next section.

D.4 Naturality of expressions

If we can derive t:T [α] then not only tA:T [A] for any type-sequence A, by an ap-
propriate substitution theorem, but also (tA, tA′) ∈ T [R] for any relation-sequence
R:⊆ A×A′. (It is to be understood that overloaded operators, like the effective equality-
test (==A):A×A→ Bool in Miranda, may not be used as if they where polymorphic.)
Taking the context into account, we have the following main theorem, similar to the
abstraction theorem in [75], the fundamental theorem of Logical Relations in [62], and
the parametricity result in [83]:

Theorem D.1 (Naturality) If x:S[α] ` t[x]:T [α] then for any sequencesA,A′, R, s, s′,
where R:⊆ A×A′ respects extensional equality, and (sj , s

′
j) ∈ Sj [R], one has:

(tA[s], tA′ [s′]) ∈ T [R]

D.4. NATURALITY OF EXPRESSIONS 149

Remark: we say that t[x] is natural . The theorem may be generalized to relations of
arbitrary arity.

Proof. By a straightforward induction on the derivation of x:S[α] ` t[x]:T [α]. We
check all rules:

Var-intro. The judgement is x:S[α] ` xj :Sj [α]. By assumption we have (sj , s
′
j) ∈ Sj [R]

indeed.

(→)-elim. The hypotheses say (f [s], f [s′]) ∈ U [R] → V [R] and (u[s], u[s′]) ∈ U [R].
Then by definition of (→) on relations we obtain:

(f [s]u[s], f [s′]u[s′]) ∈ V [R]

(→)-intro. The hypothesis for the premise x:S[α], y:U [α] ` v[x, y]:V [α] says that for
any (s, s′):∈ S[R] and (u, u′):∈ U [R] one has (v[s, u], v[s′, u′]) ∈ V [R].
So ((λy.v[s, y])u, (λy.v[s′, y])u′) ∈ V [R] as relations are closed under conversion.
Hence:

(λy.v[s, y], λy.v[s′, y]) ∈ U [R]→ V [R]

Θ-intro. We must show:

(θj , θj) ∈ Fj [U [R],ΘU [R]]→ ΘU [R]

This is an instance of (D.4).

Θ-elim. The (global) hypothesis is: (vj [s], vj [s′]) ∈ Fj [U [R], V [R]] → V [R] for each j.
We must show:

(Θ elim(v[s]),Θ elim(v[s′])) ∈ ΘU [R]→ V [R]

We use a local induction on the generation of ΘU [R]. Thus we will prove ΘU [R] ⊆
P where:

P := {(t, t′): ΘU [A]×ΘU [A′] |: (Θ elim(v[s])t,Θ elim(v[s′])t′) ∈ V [R]}

Note that:
(Θ elim(v[s]),Θ elim(v[s′])) ∈ P → V [R] (D.6)

We check (D.5) for each j:

(d, d′) ∈ Fj [U [R], P]
⇒ (Fj [α,Θ elim(v[s])]d, Fj [α,Θ elim(v[s′])]d′) ∈ Fj [U [R], V [R]] {(D.3) on (D.6)}
⇒ (vj [s](Fj [α,Θ elim(v[s])]d), vj [s′](Fj [α,Θ elim(v[s′])]d′)) ∈ V [R] {global hyp.}
⇔ (Θ elim(v[s])(θjd),Θ elim(v[s′])(θjd

′)) ∈ V [R] {conversion}
⇔ (θjd, θjd

′) ∈ P {def. P}

The theorem suggests the following definition:

150 APPENDIX D. NATURALITY OF POLYMORPHISM

Definition. Extensional equality under a sequence of assumptions xj :Sj , noted

x:S[α] |= t[x] = t′[x]:T [α] ,

holds iff, for all sequences A,A′; R:⊆ A×A′; (s, s′):∈ S[R] one has (tA[s], t′A′ [s′]) ∈
T [R].

Convention. All of the following definitions and theorems may be taken in the context
of a set of assumptions, and all terms should be taken modulo extensional equality under
these assumptions.

Definition. A type expression T [α] is called functorial (in α) if there is an expression
T [p] that satisfies

p:α→ β ` T [p]:T [α]→ T [β] (D.7)

and that preserves identity, |= T [I] = I:α → α. We shall shortly proof that because of
naturality, T preserves composition too.

Many applications arise by using a sequence of function-like relations:

Definition. For p:A→ A′ let the graph of p be:

(p) := {x:A :: (x, px) }

A relation R:⊆ A×A′ is called function-like if R = (p) for some p:A→ A′. (Note that,
in a cpo, (p) is closed under directed limits iff p is continuous and strict, i.e. p⊥A = ⊥A′ .)

Fact. For function-like relations we have, if p:A→ A′, q:B → B′:

(p)→ (q) = {(f, f ′) |: f ◦̄ q = p ◦̄ f ′:A→ B′} (D.8)
(p)∪ → (q) = {f :A→ B :: (f, p ◦̄ f ◦̄ q) } (D.9)

using R∪ := {(x, y):∈ R :: (y, x) }

Also useful might be, for f :A′ → B:

(p ◦̄ f, f ◦̄ q) ∈ (p)→ (q) (D.10)

For functorial type expressions, the functorial interpretation must coincide with the
relational interpretation:

Theorem D.2 If T [α] is functorial, then for any p:A→ B,

(T [p]) = T [(p)] .

Proof. We derive:

(I, p) ∈ (IA)→ (p) {(D.8)}
⇒ (T [I], T [p]) ∈ T [(IA)]→ T [(p)] {naturality T}
⇔ (I, T [p]) ∈ (IT [A])→ T [(p)] {preservation of identity}
⇔ (T [p]) ⊆ T [(p)] {definition (T [p]), →}

D.5. APPLICATIONS 151

and:

(p, I) ∈ (p)→ (IB) {(D.8)}
⇒ (T [p], T [I]) ∈ T [(p)]→ T [(IB)] {naturality T}
⇔ (T [p], I) ∈ T [(p)]→ (IT [B]) {preservation of identity}
⇔ T [(p)] ⊆ (T [p]) {definition (T [p]), →}

So we have, for example, (p× q) = (p)× (q) and can safely omit the parentheses. Notice
that p→ q can only be read as (p)→ (q), for α→ β is not functorial.

Theorem D.3 Any functorial T [α] must preserve composition, i.e., if p:A → B and
q:B → C, in some context, then |= T [p ◦̄ q] = T [p] ◦̄ T [q]:A→ C.

Proof.

(p ◦̄ q, q) ∈ (p)→ (IC) {(D.8)}
⇒ (T [p ◦̄ q], T [q]) ∈ T [(p)]→ T [(IC)] {naturality T}
⇔ (T [p ◦̄ q], T [q]) ∈ (T [p])→ (IT [C]) {theorem D.2}
⇔ T [p ◦̄ q] = T [p] ◦̄ T [q] {(D.8)}

The naturality theorem specializes for polymorphic t:T [α] and p:A→ A′ to:

(tA, tA′) ∈ T [(p)] (D.11)

So if f :U [α] → V [α], and hence (f, f) ∈ U [p] → V [p] by (D.11), then f is a natural
transformation indeed.

D.5 Applications

Example D.1 A simple application is to prove that f = λx.x is the only polymorphic
function of type f :α → α. Naturality of f says: for any R:⊆ A×A′ we have (f, f) ∈
R→ R.
Now, fix type A and a:A. Taking R := {(a, a)} yields (fa, fa) ∈ R, as (a, a) ∈ R. So
fa = a for all a, hence f = λx.x by extensionality of functions.

(In an alternative language where types are cpo’s there are two solutions. If a 6= ⊥,
we must take R := {(⊥,⊥), (a, a)} and get fa ∈ {⊥, a}. Furthermore, for any b:B we
can get (fa, fb) ∈ {(⊥,⊥), (a, b)}. So in case fa = ⊥ we have fb = ⊥ for all b, hence
f = λx.⊥; and in case fa = a we obtain fb = b and hence f = λx.x.)

Example D.2 Let ∗ be a (postfix) functor, say of lists, so for p:A → A′ we have
p∗:A∗ → A′∗ and (p∗) = (p)∗. Let f be a function with the type of foldr, i.e.:

f : (α× β → β)× β → (α∗ → β)

152 APPENDIX D. NATURALITY OF POLYMORPHISM

Naturality of f on function-like relations says: if p:A→ A′, q:B → B′ then

(f, f) ∈ (p× q → q)× q → (p∗ → q)

i.e. if (c, c′):∈ (p× q → q) and (b, b′):∈ (q) then (f(c, b), f(c′, b′)) ∈ (p∗ → q).
Using (D.8) this equivales: if

c ◦̄ q = (p× q) ◦̄ c′ : A×B → B′

then:
f(c, b) ◦̄ q = p∗ ◦̄ f(c′, qb) : A∗ → B′

(This is a generalization of the promotion-theorem for forward lists [52].) Notice that
the result is independent of the definition of f .

In particular, we have for⊕:A′×B′ → B, as by (D.10) ((p×q)◦̄⊕, ⊕◦̄q) ∈ (p×q → q):

f((p× q) ◦̄ ⊕, b) ◦̄ q = p∗ ◦̄ f(⊕ ◦̄ q, qb) (D.12)

Another instance yields, as +< ◦̄ foldr(c′, b′) = (I× foldr(c′, b′)) ◦̄ c′ and foldr(c′, b′) nil = b′:

f(+<, nil) ◦̄ foldr(c′, b′) = f(c′, b′)

Example D.3 1 Finally, we give an application using ternary relations. Let (+) be a
functor, say of non-empty lists, and (/B) a (polymorphic) mapping of operators ⊕:B ×
B → B into ⊕/:B+ → B.

We will prove: if f, g:A → B, and ⊕:B × B → B is commutative and associative,
then for l:A+,

⊕/(f+l) ⊕ ⊕/(g+l) = ⊕/((f ⊕A g)+l)

where ⊕A: (A→ B)× (A→ B)→ (A→ B) is the lifted version of ⊕. We will regard ⊕
as a ternary relation ⊕:⊆ B ×B ×B so that:

(x, y, z) ∈ ⊕ := x⊕ y = z

We derive:

∀l:A+ . (⊕/(f+l), ⊕/(g+l), ⊕/((f ⊕A g)+l)) ∈ ⊕

⇐ (f+, g+, (f ⊕A g)+) ∈ A+ → ⊕+

∧ (⊕/,⊕/,⊕/) ∈ ⊕+ → ⊕

⇐ (f, g, (f ⊕A g)) ∈ A→ ⊕
∧ (⊕,⊕,⊕) ∈ ⊕×⊕ → ⊕ {naturality of (+), (/) }

⇔ ∀x:A . fx⊕ gx = (f ⊕A g)x
∧ ∀(xj , yj , zj):∈ ⊕ . (x0 ⊕ x1, y0 ⊕ y1, z0 ⊕ z1) ∈ ⊕

⇔ true
∧ ∀xj , yj . (x0 ⊕ x1)⊕ (y0 ⊕ y1) = (x0 ⊕ y0)⊕ (x1 ⊕ y1)

⇐ ⊕ is commutative and associative
1Suggested by Roland Backhouse

D.6. DINATURAL TRANSFORMATIONS 153

D.6 Dinatural transformations

Mac Lane [51] defines “dinatural transformations”. A result by Backhouse [6, section 6]
on a dinaturality property in relational calculus inspired us to the following derivation
of dinaturality for polymorphic objects from general naturality. (Backhouse’ theorem,
second half, bears a relationship to our property (D.15), written as T [p ‖ p] · T [p ‖ I] ⊆
T [I ‖ p]).)

Definition. A difunctor T [α ‖ β] is given by a type T [α ‖ β] and a term T (x ‖ y) typed
by

x:α→ α′; y:β → β′ ` T (x ‖ y):T [α′ ‖ β]→ T [α ‖ β′] (D.13)

(note the contravariance in α) such that identity is respected.

Take care not to confuse, for p:A → A′, the term T (p ‖ p):T [A′ ‖ A] → T [A ‖ A′]
with the relation T [p ‖ p]:⊆ T [A ‖ A]× T [A′ ‖ A′].

Normally, any type expression T [α] can be written as a difunctor such that T [α] =
T [α ‖ α], by separating all covariant and contravariant type variable occurrences, as
follows.

If T [α] = αi, take T [α ‖ β] := βi and T (x ‖ y) := yi.
If T [α] = U [α]→ V [α], a difunctor is given by:

T [α ‖ β] := U [β ‖ α]→ V [α ‖ β]
T (x ‖ y) := U(y ‖ x) ◦→ V (x ‖ y)

using u ◦→ v := λf.(u ◦̄ f ◦̄ v)

Remark that, as a relation, (u ◦→ v) = (u∪)→ (v) by (D.9).
If T [α] = ΘU [α], one needs a difunctorial type constructor Θ′(α ‖ β) such that

ΘU = Θ′(U ‖ U). Normally, if Θ is already functorial one can take just Θ′(α ‖ β) := Θβ,
otherwise the language is required to contain such a constructor. Then one takes:

T [α ‖ β] := Θ′(U [β ‖ α] ‖ U [α ‖ β])
T (x ‖ y) := Θ′(U [y ‖ x] ‖ U(x ‖ y))

Theorem D.4 (dinaturality) When ` t:T [α] where T can be written as a difunctor,
T [α] = T [α ‖ α], then for any p:A→ A′ one has:

` T (I ‖ p) tA = T (p ‖ I) tA′ (D.14)

Proof. Naturality of T (x ‖ y) as typed by (D.13) gives, using (I, p) ∈ IA → p and
(p, I) ∈ p→ IA′ :

(T (I ‖ p), T (p ‖ I)) ∈ T [p ‖ p]→ T [IA ‖ IA′] . (D.15)

Naturality of t:T [α ‖ α] gives:

(tA, tA′) ∈ T [p ‖ p] .

Together this gives (T (I ‖ p) tA, T (p ‖ I) tA′) ∈ T [IA ‖ IA′] . As T preserves identity
relations, we obtain (D.14).

154 APPENDIX D. NATURALITY OF POLYMORPHISM

Corollary D.5 All polymorphic functions f :U [α] → V [α], where U and V can be
written as difunctors, are dinatural transformations. That is to say, they satisfy for
p:A→ A′ :

U(p ‖ I) ◦̄ fA ◦̄ V (I ‖ p) = U(I ‖ p) ◦̄ fA′ ◦̄ V (p ‖ I) : U [A′ ‖ A]→ V [A ‖ A′]

Example D.4 Any function

f : (α× β → β)× β → (α∗ → β)

will satisfy for p:A→ A′, q:B → B′:

((p× q ◦→ I)× I) ◦̄ fAB ◦̄ (I∗ ◦→ q) = ((I× I ◦→ q)× q) ◦̄ fA′B′ ◦̄ (p∗ ◦→ I)

Applied to some (⊕, b): (A′ ×B′ → B)×B, this is our result (D.12) in section D.5.

D.7 Second-order languages

We may use a second-order language, where, say, ∀α.T [α] is a type with:

x:S ` t:T [α], where α does not occur free in S ⇒ x:S ` t:∀α.T [α]
x:S ` t:∀α.T [α] ⇒ x:S ` t:T [U]

The appropriate extension of relations is, if R[Q]:⊆ T [A]× T [A′] for any Q:⊆ A×A′

(that is closed under extensional equality):

∀ρ.R[ρ] := { (t, t′) |: ∀A,A′: Type.∀Q:⊆ A×A′ . (t, t′) ∈ R[Q]}

As an application, we define type IN, z: IN and s: IN→ IN by:

IN := ∀α.((α→ α)→ (α→ α))
z := λf.λa.a

s := λm.λf.λa.f(mfa)

We will prove Peano’s induction-axiom.

Theorem D.6 When for P :⊆ IN one has

z ∈ P ∧ ∀m:∈ P :: sm ∈ P

then n ∈ P for all n: IN.

Proof. Remember that naturality of n says that for any types A, A′, and relation
Q:⊆ A×A′, we have (n, n) ∈ (Q→ Q)→ (Q→ Q).
The proof is in two steps.

1. Take a predicate-like relation Q := {n:∈ P :: (n, n) }. The assumptions say (s, s) ∈
(Q→ Q) and (z, z) ∈ Q, hence by naturality of n we get (ns, ns) ∈ (Q→ Q) and
(nsz, nsz) ∈ Q, i.e. nsz ∈ P .

2. What remains to prove is nsz = n, i.e. for any type A, f :A → A, a:A we must
prove nszfa = nfa.
Taking Q := {(m,x): IN × A |: mfa = x}, naturality guarantees (nsz, nfa) ∈ Q
provided (s, f) ∈ (Q→ Q) and (z, a) ∈ Q. But these properties hold by definition
of s and z.

D.8. OVERLOADED OPERATORS 155

D.8 Overloaded operators

We remarked that polymorphic functions may not use overloaded operators, like an effec-
tive equality-test (==A):A×A→ bool that is defined only for some types A. However,
if we require types instantiated for type-variables to support certain operations, we can
give similar requirements on relations. Such restrictions may be provided explicitly by
a “type class” in the language Haskell [38].

Definition. Let z be the class of types α with associated operations vi:Ti[α], and let A
and A′ be two “instances” of z with operations ti:Ti[A] and t′i:Ti[A′]. The same written
in Haskell:

class z α where { v1 :: T1[α] ;; ...;; vn :: Ti[α] }
instance z A where { v1 = t1 ;; ...;; vn = tn }
instance z A′ where { v1 = t′1 ;; ...;; vn = t′n }

A relation R:⊆ A×A′ is said to respect class z, iff for each i, one has (ti, t′i) ∈ Ti[R].

For example, consider the class Eq of types a with equality-test:

class Eq a where (==) :: a -> a -> Bool

Relation R respects Eq iff for all (x, x′):∈ R, (y, y′):∈ R one has (x == y) = (x′ ==
y′) : Bool. Note that not all relations have this property, hence (==) is not natural.
But one can prove the following variant:

Restricted naturality. If expression s has type S[α] for any instance α of class z as
above, which is expressed in Haskell by

s :: z α => S[α]

then for any relation R:⊆ A×A′ that respects z we have that (s, s) ∈ S[R].

Acknowledgement. Thanks are due to Roland Backhouse and Wim Hesselink for
many comments that greatly improved upon our presentation.

156

Index

· (relational composition), 37
◦̄ (forward composition), 28
◦̄ (morphism composition), 51
◦ (backward composition), 28
! (unique element type), 34
(,), 31
(;), 29
(|), 32, 39
+, 32
. (function application), 28
0, 33, 40
::, 27, 31
::=, 32
:=, 24
:=:, 30
=, 33
==, 128
=>, 128
=t, 26
? (goal variable), 137
[] (relational image), 38
(length of a sequence), 33
ALG, 54, 59
Alg, 53
CATi, 51
CPO, 99
Card, 122
Cati, 50
Define by , 30, 32
∆ (diagonal functor), 52
Dom, 31
FAM, 111
Fam, 31
I (identity function), 28
Id (identity object), 51
K (constant function), 28
IN, 33
IN rec, 33
Ord, 122
P (subset type), 37
Π (generalized product), 27
Prop, 34

Set, 120
Σ (generalized sum), 29
Sign (signatures), 53
TYPEi, 51
Typei, 26
Variables , 25

(anonymous variable), 24
ac (axiom of choice), 35
⊥ (undefined object), 99, 101
card, 122
↓ (definedness), 101
eq, 33–35
∃ elim, 35, 137
∃ in, 35
∃, 35
\ (reverse application), 27
fst, 29
∈, 37
ι (iota description operator), 35, 136, 139
≤ (subobject inclusion), 53
7→ (function abstraction), 28
µ (initial F -algebra), 68
µ rec, 77
ν (final F -coalgebra), 85
ω chain, 99
ω, 33
π (product projection), 28
// (quotient type), 140
raa (reductio ad absurdum), 36
s (successor), 33
σ (sum injection), 29
∼, 37, 58
snd, 29
v (approximates), 99
⊆, 37
⊆t (coercion), 25
×, 32, 52
→, 27, 50
→c (continuous function space), 99
.→ (natural transformations), 51
., 29
↑ (optional objects), 101

INDEX 157

`, 24
` (derivability), 128
[], 29
〈 〉 (sequences), 32
〈 〉 (tupling function), 28
[()] (anamorphism), 85
([]) (catamorphism), 54
[[]] (paramorphism), 75
{ |: }, 36, 37
{ :: }, 37
| |, 37
∪ (relational inverse), 37
op (dual category), 52
∗ (finite sequences), 33
< (relational left domain), 37
> (relational right domain), 37

abstract syntax class, 19, 20
ADAM, 8, 18
ALF, 12
algebra, 53
algebra with equations, 57
algebra, Σ-, 54
algebra, F -, 54
algebraic recursion, 74
Algebraic Specification, 63
ambiguity, 113
anamorphism, 85, 87
anti-foundation, 125
ATT (ADAM’s Type Theory), 126
Automath, 11
axiom of choice, 35, 121

Backus-Naur form, 32
bar recursion, 112
binary tree, 41
boolean, 32

cardinal, 122
carrier, 53
catamorphism, 54
category, 50
CC, 12, 107
co-inductive types, 85
coalgebra, F -, 85
cocone, 100
coercion, 25
concrete syntax class, 19, 22
cons list, 41
constructive type theory, 10
context, 126
continuous function, 99

convertible, 128
coproduct, 53
cpo, 98
CSP, 88
CTT, 10

declaration, 25
declaration type, 30
definition, 24
dependent recursion, 76
description operator, 136
deterministic, 45
DEVA, 12
dialgebra, 54
dinaturality, 153
domain, 31
domain theory, 98
dual, 52

ECC, 107
enumeration, 32
equality, 33
exponential type, 27
extensionality, 27

family, 31
final, 52
finite type, 31
fixed point, 99
fixed point induction, 101
forgetful functor, 59
function space, 27
functor, 51
functorial, 144

generalized product, 10
generalized type system, 10
goal variables, 137

homomorphism, 54

impredicativity, 11, 107
inclusion map, 53
induction, 13
infinite list, 43, 86
inherited parameter, 20
initial, 52
initial interpretation, 90, 91
iterated inductive definition, 42
iteration, 55
ITT, 11

join list, 41

158 INDEX

judgement, 10, 128

Knaster-Tarski, 47

label, 32
labeled sum, 32
law, 59
lazy, 98
LCF, 11, 101
Leibniz equality, 33
level, 26
liberal mutual recursion, 82
linear proof, 39

Mendler recursion, 78
ML, 11
monad, 61
monotonic operator, 47
morphism, 50
mutual inductive type, 68
mutual recursion, 81
MV, 11

natural transformation, 51
naturality, 148
naturals, 33, 40
no confusion, 41, 56
no junk, 41, 56
Nuprl, 11

object, 50
operation, 53
operator domain, 66
operator specification, 67
operator, infix, 28
operator, prefix, 27
ordinal, 122
ordinal notation, 42

parametrized universe, 115
paramorphism, 75
partial function, 101
pattern, 23
Peano axioms, 40
Pebble, 30
plain algebra, 70
polynomial functor, 68, 69
positive type expressions, 72
predecessor, 45, 60
predicate, 36
primitive recursion, 44
process, 87

product, 27, 52
proof tree, 77
propositions, 34
propositions-as-types, 11
pseudo definition, 25

quantifier, 31
quotient type, 139

recursion, 13
reductio ad absurdum, 36
reduction, 128
refinement, stepwise, 114
regular cardinal, 123
relation, 37, 147
rose tree, 42
rule set, 44
rules of type theory, 128

scope rules, 114
sectioning, 29
semantic equation, 58
signature, 53
simple type system, 10
sort, 53
span, 58
standard element, 108
stream transformers, 88
structure definition, 30
subobject, 53
subset type, 37
substitution, 127
subtype, 36
successor, 40
sum, 29, 53
supremum, 68
syntactic equation, 58
syntactic operation, 19
syntactic predicate, 19
syntactic term, 57
synthesized parameter, 20

term, abstract, 126
terms in ADAM, 23
TK, 109
total induction, 43
transfinite induction, 46
transfinite recursion, 48
transformer, 59
tuple, 27
two-level grammar, 19
type conversion, 33

INDEX 159

type theory, 10

universal algebra, 50
universe, 26
universe formation, inductive, 110

weak initial algebra, 108
weakly initial, 52
well-founded, 45, 46
well-ordering, 45
wellordering type, 68

ZFC, 120

160

Bibliography

[1] C. J. Aarts, R. C. Backhouse, P. Hoogendijk, T. S. Voermans, and J. van der Woude,
A Relational Theory of Datatypes. Available via anonymous ftp from ftp.win.tue.nl in
directory pub/math.prog.construction, Eindhoven University of Technology 1992. 12

[2] H. Abrahamson and V. Dahl, Logic Grammars. Springer-Verlag 1989. 19

[3] Peter Aczel, An introduction to Inductive Definitions. In: Handbook of Mathematical
Logic (ed. Jon Barwise), North Holland 1977, pp. 739–782. 44, 45, 47

[4] Peter Aczel, Non-well-founded Sets. CSLI Lecture Notes no. 14, Stanford 1988. 93, 125

[5] Roland Backhouse, Paul Chisholm, Grant Malcolm, and Erik Saaman, Do-it-yourself type
theory. Formal Aspects of Computing 1 (1989), pp. 19–84.

[6] R.C. Backhouse, On a Relation on Functions. In: Beauty Is Our Business—A Birthday
Salute to Edsger W. Dijkstra (ed. W.H.J. Feijen e.a.), Springer Verlag 1990, pp. 7–18.
153

[7] R.C. Backhouse, P.J. de Bruin, G.R. Malcolm, T.S. Voermans, and J.C.S.P. van der Woude,
Relational catamorphisms. In: Constructing Programs From Specifications, North
Holland 1991, pp. 287–318.

[8] Roland Backhouse and Henk Doornbos, Mathematical Induction Made Calculational. CS-
report 94-16, Eindhoven University of Technology 1994. 12

[9] E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott, Functorial Polymorphism. Theo-
retical Computer Science 70 (1990), pp. 35–64. 145

[10] Erik Barendsen and Marc Bezem, Bar Recursion versus Polymorphism. Technical Report
81, Utrecht Research Institute for Philosophy, Utrecht University 1991. 112

[11] N.G. de Bruijn, A survey of the project AUTOMATH. In: To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism (ed. Seldin and Hindley),
Academic Press 1980, pp. 579–607. 11

[12] N.G. de Bruijn, The Mathematical Vernacular, a language for mathematics with typed sets.
In: Workshop on Programming Logic, Marstrand Sweden 1987. 11

[13] P.J. de Bruin, Towards decidable Constructive Type Theories as practical descriptive and
programming languages. Master’s thesis, report 87-6, Dept. of Informatics, University of
Nijmegen 1987.

[14] P.J. de Bruin, Naturalness of Polymorphism. Report CS8916, Dept. of Mathematics and
Computing Science, University of Groningen 1989. 144

[15] P.J. de Bruin, Proof elimination in Type Theory. Report CS9202, Dept. of Mathematics and
Computing Science, University of Groningen 1992. 135

BIBLIOGRAPHY 161

[16] R. Burstall and B. Lampson, A kernel language for abstract data types and modules. In:
Semantics of Data Types 1984, LNCS 173, pp. 1–50. 30

[17] A. Carboni, P.J. Freyd, and A. Scedrov, A Categorical Approach to Realizability and Poly-
morphic Types. In: Mathematical Foundations of Programming Language Seman-
tics 1987, LNCS 298, pp. 23–42. 145

[18] R.L. Constable e.a., Implementing Mathematics with the Nuprl Proof Development System.
Prentice Hall 1986. 11, 72, 102, 139

[19] Robert L. Constable, Type Theory as a Foundation for Computer Science. In: Theoretical
Aspects of Computer Science 1991, LNCS 526, pp. 226–243. 137

[20] R.L. Constable and N.P. Mendler, Recursive Definitions in Type Theory. In: Logics of
Programs 1985, LNCS 193, pp. 61–78.

[21] Th. Coquand and G. Huet, A Theory of Constructions. In: Semantics of Data Types
(ed. G. Kahn e.a.), Sophia Antipolis 1985. 12, 15, 107, 135

[22] Thierry Coquand and Christine Paulin, Inductively defined types. In: COLOG-88, LNCS
417, pp. 50–66, and Workshop on Programming Logic 1989, report 54, Programming
Methodology Group, Göteborg, pp. 191–208. 72, 78, 108

[23] Thierry Coquand, Pattern matching with dependent types. In: Proceedings of the 1992
Workshop on Types for Proofs and Programs, Göteborg 1992. 12

[24] D. DeGroot and G. Lindstrom (ed.), Logic Programming: Functions, Relations, and Equa-
tions, Prentice Hall 1986. 115, 161

[25] Peter Dybjer and Herbert Sander, A Functional Programming Approach to the Specification
and Verification of Concurrent Systems. In: Workshop on Specification and Verifica-
tion of Concurrent Systems, Stirling 1988, and Formal Aspects of Computing 1
(1989), pp. 303–319. 88

[26] Peter Dybjer, An inversion principle for Martin-Löf ’s type theory. In: Workshop on Pro-
gramming Logic 1989, report 54, Programming Methodology Group, Göteborg, pp. 177–
190.

[27] Roy Dyckhoff, Category Theory as an extension of Martin-Löf Type Theory. Report
CS/85/3, Dept. of Computational Science, University of St. Andrews 1985.

[28] H.-D. Ehrich, Specifying algebraic data types by domain equations. In: Foundations of
Computation Theory 1981, LNCS 117, pp. 120–129.

[29] Maarten M. Fokkinga and Erik Meijer, Program Calculation Properties of Continuous Al-
gebras. Report CS-R9104, CWI Amsterdam 1991.

[30] Maarten M. Fokkinga, Law and Order in Algorithmics. Ph.D. Thesis, Twente University of
Technology 1992. 52, 57, 59, 75

[31] G. Frege, Grundgesetze der Arithmetik (vol. 1), Jena 1893. 136

[32] P.J. Freyd, J.Y. Girard, A. Scedrov, and P.J. Scott, Semantic Parametricity in Polymorphic
Lambda Calculus. In: Logic in Computing Science 1988, IEEE, pp. 274–279. 145

[33] A.J.M. van Gasteren, On the shape of mathematical arguments. Ph.D. thesis, Eindhoven
1988, and LNCS 445 (1990).

[34] J.A. Goguen and J. Meseguer, Eqlog: equality, types, and generic modules for logic program-
ming. In [24], pp. 295–363.

162 BIBLIOGRAPHY

[35] M. Gordon, R. Milner, and C. Wadsworth, Edinburgh LCF. LNCS 78 (1979). 11, 101

[36] John W. Gray, A Categorical Treatment of Polymorphic Operations. In: Mathematical
Foundations of Programming Language Semantics 1987, LNCS 298, pp. 2–22. 145

[37] Tatsuya Hagino, A Typed Lambda Calculus with Categorical Type Constructors. In: Cate-
gory Theory and Computer Science 1987, LNCS 283, pp. 140–157. 50, 54, 146

[38] P. Hudak and P. Wadler, editors, Report on the Functional Programming Language Haskell.
Technical Report, Yale University and University of Glasgow, Dept. of Computer Science,
December 1988. 155

[39] Martin C. Henson and Raymond Turner, A Constructive Set Theory for Program Devel-
opment. In: 8th Conf. on Foundations of Software Technology and Theoretical
Computer Science, LNCS 338 (1988), pp. 329–347. 109, 110

[40] Martin C. Henson, Program Development in the Constructive Set Theory TK. Formal
Aspects of Computing 1 (1989), pp. 173–192. 110

[41] C.A.R. Hoare, Communicating Sequential Processes. Communications of the ACM 21
(1978), pp. 666–677. 88

[42] G. Huet and G. Plotkin (eds.), Logical Frameworks. Cambridge 1991. 116

[43] Bart Jacobs, The Inconsistency of Higher Order Extensions of Martin-Löf ’s Type Theory.
Journ. Philosophical Logic 18 (1988), pp. 399–422. 136

[44] Bart Jacobs, Categorical Type Theory. Ph.D. Thesis, University of Nijmegen, 1991. 10

[45] Robert Kerkhoff, Eine Konstruktion absolut freier Algebren. Mathematische Annalen
158 (1969), pp. 109–112. 92, 94, 142

[46] J. Lambek and P.J. Scott, Introduction to higher order categorical logic. Cambridge 1986.
13, 61, 115

[47] Leslie Lamport, How to Write a Proof. SRC report 94, DEC Systems Research Center 1993.
116

[48] Zhaohui Luo, ECC, an Extended Calculus of Constructions. In: Logic in Computer Sci-
ence 1989, IEEE, pp. 386–395. 107, 126, 136

[49] QingMing Ma and John C. Reynolds, Types, Abstraction, and Parametric Polymorphism,
Part 2. In: Mathematical Foundations of Programming Semantics 1991, LNCS
598, pp. 1–40.

[50] Lena Magnuson and Bengt Nordström, The ALF Proof Editor and its Proof Engine. In:
Types for Proofs and Programs (Nijmegen 1993), LNCS 806, pp. 213–237. 12, 114

[51] S. Mac Lane, Categories for the working mathematician. Graduate Texts in Mathematics 5,
Springer-Verlag 1971. 145, 153

[52] Grant Malcolm, Algebraic Data Types and Program Transformation. Ph.D. Thesis, Univer-
sity of Groningen 1990. 42, 75, 89, 152

[53] Jan Ma luszyński, Attribute Grammars and Logic Programs: A Comparison of Concepts. In:
Attribute Grammars, Applications and Systems, Prague 1991, LNCS 545, pp. 330–
357. 19

[54] Ernest G. Manes, Algebraic Theories. Graduate Texts in Mathematics 26, Springer-Verlag
1976. 57, 61, 65, 92, 120

BIBLIOGRAPHY 163

[55] P. Martin-Löf, Hauptsatz for the Intuitionistic Theory of Iterated Inductive Definitions.
In: Second Scandinavian Logic Symposium (ed. J.E. Fenstad), North-Holland 1971,
pp. 179–216. 42, 45

[56] P. Martin-Löf, Constructive Mathematics and Computer Programming. In: Logic, Metho-
dology, and Philosophy of Science VI, 1979 (ed. L.J. Cohen e.a.), North-Holland 1982,
pp. 153–175. 11, 14, 68, 135

[57] Lambert Meertens, Constructing a calculus of programs. In: Mathematics of Program
Construction 1989 (ed. J.L.A. van de Snepscheut), LNCS 375, pp. 66–90. 54, 74

[58] L.G.L.T. Meertens, Paramorphisms. Formal Aspects of Computing 4 (1992), pp. 413–
424. 74

[59] N.P. Mendler, Inductive Definition in Type Theory. Ph.D. Thesis, Cornell University 1987.
14, 78

[60] N.P. Mendler, Recursive Types and Type Constraints in Second-Order Lambda Calculus. In:
Logic in Computer Science 1987, IEEE, pp. 30–36. 79

[61] N.P. Mendler, Predicative Type Universes and Primitive Recursion. In: Logic in Com-
puter Science 1991, IEEE, pp. 173–185. 110

[62] J.C. Mitchell and A.R. Meyer, Second-order logical relations. In: Logics of Programs
1985, LNCS 193, pp. 225–236. 145, 148

[63] J.D. Monk, Introduction to Set Theory. McGraw-Hill 1969. 120, 122

[64] Yiannis N. Moschovakis, Elementary Induction on Abstract Structures. Studies in Logic and
the Foundation of Mathematics, North Holland 1974.

[65] P. Odifreddi, Classical Recursion Theory. Studies in Logic and the Foundation of Mathe-
matics, North Holland 1989. 14

[66] Christian-Emil Ore, The Extended Calculus of Constructions (ECC) with Inductive Types.
Information and Computation 99 (1992), pp. 231-264. 107, 108

[67] Ross Paterson, Reasoning about Functional Programs. Ph.D. thesis, University of Queens-
land 1987. 100

[68] Christine Paulin-Mohring, Inductive Definitions in the system Coq — Rules and Properties.
In: Typed Lambda Calculi and Applications (Utrecht 1993), LNCS 664, pp. 328–345.
12, 72

[69] Lawrence C. Paulson, Constructing Recursion Operators in Intuitionistic Type Theory. Cam-
bridge 1984. 47

[70] Lawrence C. Paulson, Logic and computation — Interactive proof with Cambridge LCF.
Cambridge 1987. 11, 101

[71] Dus̆ko Pavlović, Constructions and Predicates. In: Category Theory and Computer
Science 1991, LNCS 530, pp. 173–196. 137

[72] Kent Petersson and Dan Synek, A Set Constructor for Inductive Sets in Martin-Löf ’s Type
Theory. In: Workshop on Programming Logic 1989, report 54, Programming Method-
oly Group, Göteborg, pp. 162–175. 69

[73] F. Pfenning and Ch. Paulin-Mohring, Inductively Defined Types in the Calculus of Con-
structions. In: Mathematical Foundations of Programming Semantics 1989, LNCS
442, pp. 209–228. 12, 108

164 BIBLIOGRAPHY

[74] G.D. Plotkin, Lambda-definability in the full type hierarchy. In: To H.B. Curry: Essays
on combinatory logic, lambda calculus, and formalism (ed. Seldin and Hindley),
Academic Press, New York 1980, pp. 363–373. 145

[75] J.C. Reynolds, Types, abstraction, and parametric polymorphism. In: Information Pro-
cessing 1983 (ed. R.E.A.Mason), North-Holland, Amsterdam, pp. 513–523. 145, 148

[76] David E. Rydeheard, Functors and Natural Transformations. In: Category Theory and
Computer Programming 1985, LNCS 240, pp. 43–57. 50, 144

[77] D.S. Scott, Domains for denotational semantics. In: Automata, Languages and Pro-
gramming 1982 (ed. M.Nielsen, E.M.Schmidt), LNCS 140, pp. 577–613. 98

[78] M. Sintzoff, M. Weber, Ph. de Groote, J. Cazin, Definition 1.1 of the generic development
language Deva. ToolUse-project, Research report, December 1991, Unité d’Informatique,
Université Catholique de Louvain, Belgium. 12

[79] M.B. Smyth and G.D. Plotkin, The Category-theoretic Solution of Recursive Domain Equa-
tions. Siam Journal of Computing 11 (1982), pp. 761–783. 98

[80] C. Spector, Provably recursive functionals of analysis: a consistency proof of analysis by an
extension of principles formulated in current intuitionistic mathematics. In: Proc. Symp.
in Pure Mathematics V (ed. J.C.E.Dekker), AMS, Providence 1962, pp. 1–27. 112

[81] A.S. Troelstra and D. van Dalen, Constructivism in Mathematics. Studies in Logic and the
Foundation of Mathematics 123 and 125, North-Holland 1988.

[82] David Turner, A New Formulation of Constructive Type Theory. In: Workshop on Pro-
gramming Logic 1989, report 54, Programming Methodology Group, Göteborg, pp. 258–
294.

[83] Phil Wadler, Theorems for free!. In: Functional Programming Languages and Com-
puter Architecture 1989 (London), ACM Press, pp. 347–359. 144, 147, 148

[84] Matthias Weber, Formalization of the Bird-Meertens Algorithmic Calculus in the Deva
Meta-Calculus. In: Programming Concepts and Methods (ed. Broy and Jones), North
Holland 1990, pp. 201–232. 12

[85] M. Weber, M. Simons, C. Lafontaine, The Generic Development Language DEVA. LNCS
738 (1993). 12, 27, 30

[86] A. van Wijngaarden e.a., Revised Report of the Algorithmic Language Algol 68. Springer
Verlag 1976. 19

[87] Martin Wirsing, Algebraic Specification. In: Handbook of Theoretical Computer Sci-
ence (ed. J.van Leeuwen), Elsevier 1990, pp. 675–788. 63, 90

Note. ‘LNCS’ refers to the series “Lecture Notes in Computer Science”, Springer-Verlag, Berlin.

165

Inductieve Typen in Constructieve Talen

Samenvatting

Deze dissertatie gaat over constructieve talen: talen om wiskundige constructies formeel
in uit te drukken. Het begrip constructie omvat niet alleen berekeningen, zoals die in een
programmeertaal kunnen worden uitgedrukt, maar ook beweringen en bewijzen, zoals die
in een wiskundige logica kunnen worden uitgedrukt, en in het bijzonder de constructie
van gestructureerde wiskundige objecten zoals rijtjes en bomen. Typen kan men zich
voorstellen als klassen van zulke objecten, en inductieve typen zijn typen waarvan de
objecten gegenereerd worden door productieregels.

Het doel van deze dissertatie is tweeledig. Ten eerste ben ik op zoek naar talen
waarin de wiskundige zijn inspiraties goed gestructureerd, correct, en toch zo vrij mo-
gelijk kan uitdrukken. Ten tweede wil ik de uiteenlopende benaderingen van inductieve
typen in één kader samenbrengen, zodat men kan zien hoe de diverse constructie- en
afleidingsregels uit een enkel basis-idee voortvloeien en ook hoe deze regels eventueel
gegeneraliseerd kunnen worden. Als basis-idee gebruik ik het begrip initiële algebra uit
de categorieëntheorie.

Mijn onderzoek naar wiskundige talen heeft niet tot een afgerond voorstel geleid. De
huidige presentatie beperkt zich tot algemene overwegingen en een deels formele, deels
informele beschrijving van een taal, ADAM. Deze dient vervolgens als medium voor de
studie van inductieve typen, die het hoofdbestanddeel van de dissertatie vormt.

De opzet van ADAM is als volgt. Om de geldigheid van de in de taal geformuleerde
argumenten te garanderen, behoeft deze een degelijke grondslag. Hiervoor stel ik een
constructieve type-theorie ATT samen, een combinatie van de “Intuitionistic Theory of
Types” van P. Martin-Löf en de “Calculus of Constructions” van Th. Coquand. Teneinde
alle wiskundige redeneervormen te kunnen omvatten, voeg ik de iota- of descriptie-
operator van Frege toe. Het is niet noodzakelijk om inductieve typen als basisprincipe
op te nemen; natuurlijke getallen volstaan om deze te construeren.

Op deze grondslag bouw ik vervolgens de taal ADAM door te bezien hoe we con-
structies en bewijzen die ik tegenkwam of zelf opstelde zo natuurlijk mogelijk maar wel
volgens de regels van typetheorie kon opschrijven. De formele definitie van ADAM, voor
zover beschikbaar, en haar semantiek in termen van de onderliggende type-theorie wor-
den gelijktijdig gegeven door een twee-niveau-grammatica. Dit maakt het in beginsel
mogelijk de taal naar behoefte met behoud van geldigheid uit te breiden met notaties
of deeltalen voor speciale toepassingen, zoals programmacorrectheid. De voorgestelde
notaties dienen dan ook niet als onaantastbaar te worden beschouwd. Het enige ken-
merkende taalelement is wellicht de notatie voor (en het consistente gebruik van) families
van objecten.

Als voorbereiding op inductieve typen geef ik eerst de klassieke benaderingen van
inductieve definities weer, waarna ik de benodigde machinerie in ADAM introduceer –
de beginselen van categorieëntheorie en algebra.

De kern van de verhandeling wordt gevormd door de beschrijving en rechtvaardiging
van inductieve typen als initiële algebra’s. Eerst beschouw ik op abstract niveau de

166 SAMENVATTING

diverse manieren waarop inductieve typen gespecificeerd kunnen worden en hoe deze
specificaties (in de vorm van een polynomiale functor) een algebra-signatuur bepalen,
eventueel met gelijkheden. Vervolgens analyseer en generaliseer ik de manieren waarop
recursieve functies op een inductief type gedefinieerd kunnen worden. Dan bezie ik in
hoeverre deze constructieprincipes gedualiseerd kunnen worden tot co-inductieve typen,
ofwel finale co-algebra’s. Ten slotte construeer ik, uitgaande van hetzij elementaire
verzamelingenleer of typetheorie, daadwerkelijk initiële algebra’s en finale co-algebra’s
voor een willekeurige polynomiale functor, en bewijs daarmee de relatieve consistentie
van alle beschreven constructieprincipes ten opzichte van ADAM’s typetheorie ATT.

Het voorgaande wordt aangevuld met de behandeling van enkele aan inductieve typen
verwante onderwerpen. Ten eerste zijn dat recursieve datatypen met partiële objecten,
zoals die in programmeertalen voorkomen waarbij men rekening moet houden met mo-
gelijk niet-terminerende programmadelen. Ik vat de benodigde domeintheorie samen, en
construeer zulke domeinen in ADAM uitgaande van finale co-algebra’s. Verder bespreek
ik kort inductieve typen in impredicatieve talen, typen als verzameling van type-vrije
objecten, en het principe van bar-recursie, en doe ik een suggestie voor de inductieve
definitie van nieuwe type-universa binnen een typetheorie. Ten slotte geef ik enkele
verdere overwegingen over wiskundige taal en bewijsnotatie, en vat de benaderingen van
inductieve typen samen.

De appendices bevatten de basisprincipes van de verzamelingenleer en van ATT, de
benodigde toevoeging van de iota-operator ofwel bewijs-eliminatie aan typetheorie, en
een studie naar uniformiteits-eigenschappen (natuurlijkheid) van polymorfe objecten, die
ik in enkele gevallen nodig heb.

Omslag-diagram

Aanschouw het wiskundig universum,
zich ontwikkelend van oorspronkelijke eenheid
tot categorische dualiteit.

De centrale straal bevat
het initiële en het finale type,
samen met de overige platte eindige typen.

Zij worden geflankeerd door de duale principes
van gegeneraliseerde som en product
en van initiële en finale dekpunt-constructie.

STELLINGEN

behorende bij het proefschrift

Inductive Types in Constructive Languages

1. Vers 18:62 van de Bhagavad Gita geeft een zeer goede verklaring van het woord Islam
(overgave), wat verwant is met Salam (vrede):

Zoek dan uw toevlucht in Hem en geef uzelf met geheel uw hart aan Hem over,
dan zult ge door Zijn genade tot de Opperste vrede komen en het Eeuwig Tehuis
bereiken. [Vertaling: Stichting school voor filosofie / Amsterdam]

2. Het wrede schijn-oordeel van koning Salomo [1 Koningen 3:25],

“Snijdt het levende kind in tweeën en geeft de helft aan de ene en de helft aan
de andere vrouw”, [Vertaling: NBG 1951]

geeft de sleutel tot een rechtvaardig printer-toewijzingsalgoritme: versnipper de beschik-
bare afdrukregels in schijn gelijkmatig over alle afdrukopdrachten, rekening houdend met
hun tijdstip van indienen, maar wijs de printer dan toe aan de opdracht die het eerst
voltooid zou zijn.

3. De afbeelding op de omslag van dit proefschrift symboliseert het wiskundig universum.

4. De uiteindelijke betekenis van de informatietechnologie ligt niet in de producten die zij
levert maar in de denkwijze die zij ons leert.

5. Poëtische zowel als mathematische inspiratie vindt het best uitdrukking in een taal die
weinig beperkingen oplegt.

6. Als men in een constructieve taal wederzijds inductieve typen opneemt, dient men te
letten op het onderscheid tussen de verschillende vormen van toegestane algebra-specifi-
catie [dit proefschrift, sectie 5.2]. Evenzo dient men bij het definiëren van een recursie-
principe over wederzijds inductieve typen te letten op het onderscheid tussen “standaard
recursie” [regel (6.2)] en “liberale recursie” [regel (6.11)].

7. De jaarlijks toenemende watervloed vervult deze functies: hij leert ons saamhorigheid,
offervaardigheid en ongehechtheid, en hij bereidt ons zachtjes voor op de mogelijkheid
van ingrijpende veranderingen in onze wereldordening.

8. Muziek draagt de essentie van het leven over aan de ziel die luistert.

9. De wereld beweegt zich onweerstaanbaar naar de heelheid.

Peter J. de Bruin

	Front page
	Abstract
	Title page
	Preface
	Contents
	Summary
	1 Introduction
	1.1 Mathematical language
	1.2 Our approach to mathematical language
	1.3 Type Theory and Set Theory
	1.4 Related efforts
	1.5 Relational calculus
	1.6 ADAM's Type Theory
	1.7 Aspects of induction and recursion
	1.8 Frameworks for studying induction
	1.9 Our treatment of induction and recursion
	1.10 Other kinds of inductive types
	1.11 Original contributions

	2 The language ADAM
	2.1 Language definition mechanism
	2.2 Basic grammar of ADAM
	2.3 Production rules
	2.3.1 Terms
	2.3.2 Patterns
	2.3.3 Definitions
	2.3.4 Declarations
	2.3.5 Coercion

	2.4 Types and universes
	2.5 Products and function spaces
	2.6 Sums and declaration types
	2.7 Families and quantifiers
	2.8 Finite types
	2.9 Infinite types
	2.10 Equality predicate
	2.11 The type of propositions
	2.12 More derived notions
	2.12.1 Predicates
	2.12.2 Subtypes
	2.12.3 Subsets
	2.12.4 Relational notations
	2.12.5 Currying
	2.12.6 Pattern matching
	2.12.7 Linear proof notation

	2.13 Conclusion

	3 Common induction and recursion principles
	3.1 Examples of inductive types
	3.2 More on natural numbers
	3.3 Inductive subset definitions
	3.3.1 Sets inductively defined by rules
	3.3.2 The well-founded part of a relation
	3.3.3 Inductive definitions as operators
	3.3.4 Fixed points in a lattice

	3.4 From induction to recursion
	3.5 Conclusion

	4 Categories and algebra
	4.1 Categorical notions
	4.2 Algebras and signatures
	4.3 Initial algebras, catamorphisms
	4.4 Algebras with equations
	4.5 Initial algebras related to well-founded relations
	4.6 An aside: monads
	4.7 Algebraic Specification
	4.8 Concluding remarks

	5 Specifying inductive types
	5.1 Single inductive types
	5.1.1 Operator domains
	5.1.2 Operators with arity
	5.1.3 The wellordering of a single inductive type

	5.2 Mutually inductive types
	5.2.1 Using an exponential category
	5.2.2 Plain algebra signatures

	5.3 Production rules for polynomial functors
	5.3.1 Positive type expressions
	5.3.2 A type of polynomial functors

	5.4 Adding equations
	5.5 Conclusion

	6 Recursors in constructive type theories
	6.1 Algebraic recursion, or paramorphisms
	6.2 Recursive dependent functions
	6.3 Mendler's approach
	6.4 Recursors for mutual induction and recursion
	6.5 Summary

	7 Co-inductive types
	7.1 Dualizing F-algebras
	7.2 Anamorphism schemes
	7.3 Dual recursion
	7.4 Dual equations
	7.5 Terminal interpretation of equations
	7.6 Conclusion

	8 Existence of inductively defined sets
	8.1 Using transfinite ordinal induction
	8.2 Kerkhoff's proof
	8.3 Algebras with equations

	9 Partiality
	9.1 Domain theory
	9.2 Optional objects
	9.3 Building recursive cpo's by co-induction
	9.4 Recursive object definitions
	9.5 Conclusion

	10 Related subjects
	10.1 Impredicative type theories
	10.1.1 Weak initial algebras
	10.1.2 Weak final algebras

	10.2 Using type-free values
	10.2.1 Henson's calculus TK

	10.3 Inductive universe formation
	10.4 Bar recursion

	11 Reflections and conclusion
	11.1 Mathematical language
	11.2 Constructive Type Theory
	11.3 Language definition mechanism
	11.4 Proofs and proof notation
	11.5 Inductive types
	11.6 Directions for further research

	A Set theory
	A.1 ZFC axioms
	A.2 Set encodings
	A.3 Ordinals
	A.4 Cardinals
	A.5 A model of ZFC
	A.6 An inductive model of ZFC
	A.7 Anti-foundation

	B ADAM's Type Theory
	B.1 Abstract syntax
	B.2 Meta-predicates
	B.3 Universes
	B.4 Products
	B.5 Sums
	B.6 Finite types
	B.7 Naturals
	B.8 Equality
	B.9 Existential propositions
	B.10 Semantics
	B.11 More derived notations

	C Proof elimination in Type Theory
	C.1 Introduction
	C.2 The basic system
	C.3 Strong existence
	C.3.1 New rules
	C.3.2 Difficulties with reduction to canonical form

	C.4 Applications
	C.4.1 Iota
	C.4.2 Quotient types
	C.4.3 Inductive types

	C.5 Conclusion

	D Naturality of Polymorphism
	D.1 Introduction
	D.2 Polymorphic typed lambda calculus
	D.3 Turning type constructors into relation constructors
	D.4 Naturality of expressions
	D.5 Applications
	D.6 Dinatural transformations
	D.7 Second-order languages
	D.8 Overloaded operators

	Index
	Bibliography
	Samenvatting (Dutch summary)

